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We relate the L-groups of a ring with involution R to its higher algebraic K-groups. As a 

by-product, we obtain long exact ‘higher’ Rothenberg sequences. These involve a particular 

K,,(R), with n?O, in the same way the traditional Rothenberg sequences involve Ko(R) and 

K,(R), respectively. 

Introduction 

In part I of this work (see [47]) we elaborated an idea of Hatcher [14] concerning 

the connection between the space of automorphisms of a manifold M and the con- 

cordance theory of M. Here in part II we take up an older suggestion of Cappell 

and Shaneson (see [32]) concerning the connection between the L-theory and the 

K-theory of a ring with involution R. The two ideas will eventually be unified, 

probably in part IV. 

Let &p.(R) be the projective quadratic L-theory spectrum of R, so that 

7~,(&p,(R))zn,+~(&p.(R)) for nz0, and 1c,(&p,(R))=0 for n<O. This can be 

defined using the methods of Ranicki [25,26]; see Sections 0 and 4 below for details. 

Let gp(R) be the K-theory spectrum of R. It can be obtained e.g. by the method 

of Segal [30] from the symmetric monoidal category of finitely generated projective 

left R-modules. Replacing an isomorphism P, + Pz in this category by its adjoint 

inverse PT+ P: defines (almost) an involution, first on the category, and then on 

gp(R). Using this involution define the homotopy orbit spectrum 

ff.G-2; KP(R)) := W-2)+ A,, KP(R), 
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and the homotopy fixed point spectrum, 

H’CG KP(R)) := mwz,(Wd+, ~$PUO); - 

see 2.1. There is a norm map of spectra, due to Dwyer, 

H.(Z,; Q(R)) -+ H’(Z,; &J(R)) 

(see Section 2) whose cofibre we denote by @‘(Z,; &(R)). 

Construction D. We construct a map of spectra 

EP : &p.(R) -+ I?‘(Z,; I&(R)). 

This appears to be what Cappell and Shaneson were looking for, and we shall use 

it in part III to construct the o?-supersimple L-groups whose existence they also 

predicted. (The idea is sketched below, towards the end of Section 0.) 

Now let Y be a pointed connected CW-space, and let y be a spherical fibration 

on Y, trivialized over the base point. Write rr = xi(Y), and let w : TC + Z2 be the first 

Stiefel-Whitney class of y. Let Ap(Y) be the K-theory of finitely dominated retrac- 

tive spaces over Y, as defined by Waldhausen [41]. Following Vogel1 [39] in most 

respects, we use the spherical fibration y to define an involution on Ap(Y). (Unlike 

Vogell’s, our involution does not change if y is stabilized. Nevertheless, the differ- 

ence is not substantial. This will be explained in part III.) 

Construction E. We construct a factorization 

fnz,; APV)) 
2 

/ 
/ 

/ I linearization 
/ 

/ 

&P.(W’ 

ZP 

- fw-G; gP(h)). 

(As might be expected, the ring Zn carries the w-twisted involution; the lineariza- 

tion map from Ap(Y) to gp(h) is compatible with the involutions defined pre- 

viously.) The new map &p,(h) --f l?‘(Z,; Ap(Y)) will also be written Ep. 

There are versions of constructions D and E where the letter p is replaced by h 

or s; for example, &s(&c) is the spectrum whose homotopy groups are the groups 

LS,(&r), and us is the K-theory of free based &r-modules and their simple iso- 

morphisms. Similarly, As(Y) is the K-theory of finite retractive spaces over Y and 

their homotopy equivalences over Y having torsion zero. The s-version is usually 

closer to geometry. 

The methods we use here in Part II are algebraic, in the sense of algebraic K- and 

L-theory. To create a little suspense, let us note that there is also a geometric way 

of getting from L-theory to K-theory. Namely, if A4 is a compact smooth or topo- 
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logical manifold, use Sullivan-Wall theory to get from the L-theory of &rr(M) to 

the space of block automorphisms of M; use the map @’ of Part I to get from 

there to the concordance theory of M; and use Waldhausen theory to get from the 

concordance theory of M to the K-theory of Zzl(M), or (preferably) to the K- 

theory of retractive spaces over M. 

It is not a good idea to read this paper without being acquainted with Part I of 

[25] and the first two parts of [41]. There is no need to be put off by the length of 

[25], because it is written in a leisurely style. 

0. Outline 

Let R be a ring with involution (= involutory anti-automorphism). Recall that the 

quadratic and symmetric L-theory spectra &p,(R) and Lp’(R) have a standard 

description in terms of chain complexes over R, due to Ranicki [25,26]; see also [27] 

and [46] for surveys. Constructing the map zp in the introduction therefore re- 

quires a description of Kp(R) in terms of chain complexes also. 

Let 9 be the category of chain complexes of projective left R-modules, graded 

over the integers and homotopy equivalent to finitely generated projective ones. 

(Call such a chain complex C f.g. projective if the direct sum of all C, is.) The mor- 

phisms in 98 are the chain maps. Call such a morphism a weak equivalence if it is 

a homotopy equivalence, and call it a cofibration if it is split injective in each dimen- 

sion r E Z. This makes g into a category with cofibrations and weak equivalences 

in the sense of Waldhausen [41]; its K-theory Kg,, in the sense of Waldhausen [41], 

is homotopy equivalent to gp(R). This was proved by Brinkmann [5] and Gillet 

[ll], but it is also clear from general theorems in [41]. 

Now let po[n] be the set of (nonempty) faces of the standard simplex d”. Inclu- 

sion defines a partial ordering on po[n]. Let Q, g be the category of covariant 

functors C : po [n] + a. This is again a category with cofibrations and weak equiva- 

lences: a natural transformation g : B + C in ~,9 is a cofibration (or a weak 

equivalence) if g, : B(s) --f C(s) is a cofibration (or a weak equivalence) for each s 

in po [n]. Note that e. 99 = g, that the rule [n] H Q, 91 defines a simplicial category 

Q. 9, and that the rule [n] ++ &, % defines a simplicial spectrum. 

A suitable notion of duality makes each spectrum &Q, %? into a spectrum with 

Z,-action. We shall discuss this first when n = 0. To begin with, we shall have to 

say what it means for two objects B and C of g z e. G8 to be dual to one another. 

To this end we introduce pairings and nondegenerate pairings. A pairing between 

B and C is simply a zero-dimensional cycle in the chain complex B’ OR C. Equiva- 

lently, it is a chain map B --t B’ OR C, where Z is regarded as a chain complex con- 

centrated in dimension zero. (Recall from [25] that B’ is obtained from B by 

shifting the R-action from left to right using the involution on R.) Such a pairing 

induces homomorphisms from N-“(C; R) to H,(B) for all n E z (by a slant pro- 

duct), where H-“(C; R) =H,(Hom,(C, R)). See Section 3 below. It these homo- 
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morphisms are isomorphisms for all n E z, then we call the pairing nondegenerate. 

Note how necessary it is here to allow chain complexes graded over the integers, not 

just over the positive integers. At any rate, if a nondegenerate pairing between B 

and C exists, then we may think of B and C as dual to one another. (Of course, the 

idea goes back to Spanier and Whitehead who used it in stable homotopy theory.) 

We now introduce another idea, due to Vogel1 [39]. The method of Vogell, adapted 

to our circumstances, is to inflate Waldhausen’s definition of Kg by substituting 

for each chain complex C in sight a triple (B, C, q). Here q : Z --f B’aR C is a non- 

degenerate pairing between the chain complexes B and C in g. This inflation has 

no effect on the homotopy type of Z$a, because every chain complex C in g occurs 

in an essentially unique nondegenerate pairing. However, the new description of 

&a makes it clear that Kg has an involution: interchange the objects B and C in 

all nondegenerate pairings q : L + BfOR C. See Section 4 for more details. 

In much the same way, we can understand duality in the categories e,, 9, for 

arbitrary n20, by talking about pairings and nondegenerate pairings. A pairing 

between objects B and C in e, g is a natural chain map 

cl(s) + B(s)’ OK C(s) 

where s ranges over the objects of po[n], or over the faces of d”, and where cl(s) 

is the cellular chain complex of the face sCd”. Note that cl(s) has a standard basis 

with one generator for each face r contained in s. Again, such a pairing is non- 

degenerate if certain homological conditions are fulfilled; see 3.5 below. (Topologists 

should find it easy to guess what these conditions are by meditating on the Poincare 

duality properties of a compact manifold Vk+” modelled on Rkxd”. See 3.13.) As 

before, the fact that each object in e, 8 occurs in an essentially unique non- 

degenerate pairing can be used to construct an involution on Ke, 8. We conclude 

that the rule [n] - &, g is a simplicial Z,-spectrum. 

Next we recall the precise definition of Q&‘(R), the zeroth infinite loop space 

of the symmetric L-theory spectrum &‘(R). Let W be the usual projective resolu- _ 
tion over Z[Z,] of the trivial module J!. Let C be an object of e, g,. Generalizing 

the standard definition for n = 0, we declare that a symmetric pairing of C with itself 

is a natural chain map 

v, : wg cl(s) -+ C(s)’ @K C(s) 

(with s E po[n]) which is compatible with Z2-actions. (Z, acts on C(S)’ OR C(S) by 

switching the factors, with the usual sign changes.) Such a symmetric pairing gives 

rise to an ordinary pairing: choose a splitting of the augmentation map W+H. 

Therefore we can speak of nondegenerate symmetric pairings. The nondegenerate 

symmetric pairings (C, 9) as above, with C in e, 5@, form the n-simplices of a sim- 

plicial set. Its geometric realization is Q&‘(R). See also 4.8. 

Several people, e.g. Quinn and Thomas& [36], have observed that the 0-simplices 

in Q&p’(R) give rise to Z,-equivariant maps 

EZz + QKa = QKP(R) 
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(where again Q marks the zeroth infinite loop space associated to a spectrum, and 

K6B =Ke, 91 carries the duality involution described above). This is certainly plaus- 

ible; but it is also plausible and true that the n-simplices in Q@‘(R) give rise to Z,- 

equivariant maps EZ, + QZC@, $21, for any n 2 0. What we have here is a simplicial 

map from a simplicial set to a simplicial space. The simplicial set has geometric reali- 

zation Q&‘(R); the simplicial space is given by the rule [n] H mapz,(EZ*, QK@, g) 

or equivalently by [n] ++ QH’(Z,; &, ‘3). Applying the geometric realization func- 

tor I... j, we may write the map in the form 

It is not too difficult to see that this is an infinite loop map between infinite loop 

spaces; composing with the symmetrization map Q&,(R) -+ Q&p’(R) from quad- 

ratic to symmetric L-theory, we then have an infimte loop map 

zP: Q&p.(R)+ 1Qff’(Z,;Ke.~,)/. 

The crunch is now to identify IQH’(Z,; &.5B)I with QA.(.Z,; Kg). 

At this point it is natural to ask whether the simplicial Z,-spectrum [n] c IV@, g 

can be described directly in terms of the &-spectrum &g~Z$@~g. The following 

observation is a step in that direction: 

Each face s of d” determines a functor from e,, 9 to 9 which sends an object C 

in e, a to C(s). The functor is exact and so induces a map from &, 9~ to Kg. 

Since A” has 2”+’ - 1 faces, we obtain 2”+’ - 1 different maps from g@, g to g&7. 

Their sum is a map from &, 63 to a wedge of 2”” - 1 copies of Kg. This map is 

a homotopy equivalence. The proof uses the additivity theorem of [41]. 

To explain in an abstract setting what is going on, we introduce the notion of an 

augmented resolution, as follows. Let T be a discrete group acting on a spectrum 

X; we also say that X is a T-spectrum. An augmented T-resolution of X is a simpli- 

cial T-spectrum X : [n] - X[n] having various properties reminiscent of augmented 

projective resolutions in homological algebra; in particular, X[O] =X. It turns out 

that, for such an augmented resolution, one always has 

IH’(T; X[-])I f P(T; X) 

if T is finite. (This time the vertical bars denote the geometric realization of a sim- 

plicial spectrum, which is again a spectrum.) If X is (-1)-connected, then it is also 

true that 

lQH’(T; X[-1)) = QI?(T; X). 

This is chiefly useful because the simplicial &-spectrum &.a is in fact an aug- 

mented Z,-resolution of Kg. (More or less, this is what the splitting of each &, 93 

into copies of Kg means.) The infinite loop map Zp which we just obtained can 

therefore be written in the form 
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or as a map of spectra 

Q.(R) -A’(Z,; Kg). 

This completes the sketch of construction D. 

Let il; be the homotopy fibre of the composite map of spectra 

Q.(R) 3 A’(Z,; &-p(R)) - A’(Z,; P’lJp(R)) 

where /3’ is the ith Postnikov base (obtained by killing homotopy groups in dimen- 

sions ri). Then A0 is &p.(R), and Ai+, maps to Ai. So we may view the groups 

rc,(A;) as refined versions of the quadratic (projective) L-groups L,(R) = n,(&,), the 

degree of refinement depending on i. For any i 10 there is a long exact ‘Rothenberg’ 

sequence 

. ..-71.(/2;+l)~nn(/2;)jAn~i(Z2;Ki(R))~~~_I(/Z;+l)-*“’ 

with IZ E z. (See 2.6 below.) For i = 0 and i = 1, these Rothenberg sequences are well 

known; Cappell and Shaneson conjectured their existence for larger i. The case i = 2 

is treated in the thesis of Kennedy [16]. 

We shall only say a few words about construction E in this outline. It is a non- 

linear version of construction D. The nonlinearity comes from replacing chain com- 

plexes with an action of&c by spectra with an action of a topological group G (with 

no(G) = n). The point is that K-theory is sensitive to the difference, but quadratic 

L-theory is not. See Proposition 6.2. We stress that the map in construction D fac- 

tors through symmetric L-theory Lp’(R), but its nonlinear counterpart in con- 

struction E (with R = hr) does not do so for any obvious reason. 

1. Simplicial spectra 

Let A be the category with objects [k] = { 0, 1, . . . , k} for k 2 0 and with monotone 

maps as morphisms. If ~2 is any category, then a simplicial d-object is a contra- 

variant functor from A to ~2. For example, there are simplicial sets, simplicial 

spaces, simplicial spectra, etc. (So we do not use the expression “simplicial spec- 

trum” in the same way as Kan and Whitehead [15].) 

To avoid technical problems, let us agree that space means CW-space in this sec- 

tion; all maps between spaces are to be cellular. Similarly, spectrum means CW- 

spectrum in the sense of Boardman [3], see also [l], and maps between spectra are 

to be cellular. 

The geometric realization of a simplicial space X is the space 

1x1 =kUgd*XXwl -9 
> I 

where - denotes the usual relations. If X is a simplicial spectrum, its geometric 

realization is the spectrum 
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1x1 =kyo&wkl -* > I 
(See [30, Appendix].) 

1.1. Question. Let X be a simplicial spectrum. Form the simplicial space Q(X) : [k] +-+ 

Q(X[k]). What can be said about the homotopy type of the geometric realization 

IQWI? 

1.2. Definition. Let X be as in 1.1. By generously killing homotopy groups in 

dimensions an, it is easy to construct a simplicial spectrum p”X and a simplicial 

map X-/3”X such that for all k, the homomorphisms 

are isomorphisms for j< n and ~~(/3”X[k]) = 0 for j? n. Define yet another sim- 

plicial spectrum $‘X by 

@X[k] = Z-’ (cofibre of the map X[k] -P”X[k]). 

There is an evident map of simplicial spectra from @X to X, and we call $‘T the 

(n - I)-connected cover of X. 

1.3. Lemma. There are homotopy equivalences 

lQW = lQ(~~x)l 5 Q(lv”xl). 

Proof. The map VOX + X induces a map of simplicial spaces Q(p’X) -+ Q(X) which 

is a homotopy equivalence in each degree k; therefore the induced map of geometric 

realizations is a homotopy equivalence lQ(p’X)l --f IQ(K)l. (See again [30, Appen- 

dix] .) 

To prove that lQ(~‘x)l= Q(l~‘xl) we assume, as we may, that VOX is a simpli- 

cial ?&spectrum. Then we see that 

Q(IvOXl) = h,“!‘m” ~WQ(~“P~X)I), 

where the homotopy direct limit is just a telescope. This provides us with a map 

lQ(ul”X)l -+ Q(lv”Xl) 

which is the inclusion of the beginning of the telescope. The next lemma shows that 

this map is a homotopy equivalence. 

1.4. Lemma. If 9 is a simplicial pointed connected space, then Q 1912. IsZg)l. 

Proof. This follows from [42, Lemma 5.21 on replacing all spaces in sight by their 

singular simplicial sets. 0 
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It is often useful to decompose a simplicial spectrum X into ‘minimal’ building 

blocks. Note first that any subspectrum of the geometric realization 1x1 has the form 

I$!) for a uniquely determined simplicial subspectrum !2J c X. If 191 has only finitely 

many cells, we call 9 finite. With this terminology X is the union, even the direct 

limit, of its finite simplicial subspectra 9. Call a simplicial spectrum minimal if its 

geometric realization has exactly one cell (not counting the base point). It is an exer- 

cise to verify that a minimal simplicial spectrum 3 is determined up to isomorphism 

by two integers, viz., the integer k such that 121 is isomorphic to a k-fold suspension 

of the sphere spectrum So, and the integer m?O such that a[m] # * and 3[j] = * for 

all j < m. Every finite simplicial spectrum 9 has a filtration by simplicial subspectra 

* = Filt, 9 C Filt, 9 C ... C Filt, 9 = 9 

such that Filt,, , g)/Filti 9 is minimal whenever 0 5 i< n. 
Suppose now that E is any spectrum and X is a simplicial spectrum. Then the rule 

[k] H [E, X[k]] (where [E, X[k]] is the set of homotopy classes of maps from E to 

X[k]) defines a simplicial abelian group. Therefore we can use known facts about 

simplicial abelian groups to obtain information about X. Specifically, we will use: 

1.5. Fact (see Curtis [8, Section 51). Let J be a simplicial abelian group. For each 
kz0, let 

NJ[k] = n ker(d; : J[k] + J[k- 11) 
i#O 

where the d; are the face operators in J and i = 1, . . , , k. Then 

Jtkl = @ p*WJ[mI) 
r-J: WI-Cm1 

where the direct sum ranges over all surjective monotone maps p : [k] --f [ml, with 
m I 0 arbitrary. (Each p* is injective because p has a right inverse.) 

By the remark preceding 1.5 we have a splitting of [E, X[k]] into direct summands 

indexed by surjective monotone maps p : [k] + [ml. Since the splitting is natural in 

E, we see that the homotopy type of X[k] itself splits: 

X[kl = V NX[ml. 
P: RI-b1 

The wedge summands are only well defined up to homotopy equivalence, but this 

will be sufficient for our purposes. 

1.6. Definition. We call NX[k] the nondegenerate summand of X[k]. 

1.7. Definition. The n-skeleton of X is the smallest simplicial subspectrum 9CX 

such that ‘$)[k] = X[k] for all k< n. 

1.8. Observation (cf. Weibel [45, $31). The cofibre of the inclusion i(n - 1)-skeleton 
offI+ -kit n s e e on of X/ is homotopy equivalent to Z:“NX[n]. 
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Proof. Denote the cofibre under consideration by CF,X. There is a natural homo- 

topy class of maps 

u : zFNX[n] + CF, X 

given by the composition 

It helps to regard u as a natural transformation between exact functors. They are 

exact in the following sense: If 9 is a simplicial subspectrum of X, then the homo- 

topy groups of PNg[n], Z”NX[n] and PN(X/(r))[n] can be arranged in a long 

exact sequence, and the homotopy groups of CF, ‘$), CF, X and CF,(X/$!)) can also 

be arranged in a long exact sequence. (This is obvious for the second of these func- 

tors, X- CF, X; for the first, X++_Z”NX[n], remember that ,Z’“NX[n] is a natural 

wedge summand of Z”X[n].) It will therefore be sufficient to show that u is a 

homotopy equivalence when X is minimal, and to proceed by induction on the num- 

ber of cells of X when X is finite. (If X is not finite, use a direct limit argument.) 

But the minimal case is obvious. 0 

Define a ‘weak homotopy category of simplicial spectra’ by formally inverting all 

morphisms f: X-9 in the category of simplicial spectra which are homotopy 

equivalences in each degree k. The rule which to each simplicial spectrum X asso- 

ciates the filtered spectrum 1 Xl, with filtration given by 

Filt, 1x1 = In-skeleton of X/ 

is a functor from the weak homotopy category of simplicial spectra to the homotopy 

category of filtered spectra. Conversely, suppose that 

E = U Filt, E 
fl>O 

is a filtered spectrum. We can associate to it a simplicial spectrum E” as follows. 

For each k> 0, regard the standard simplex 0: (with added base point) as a filtered 

space such that 

Filt, 0: = n-skeleton of Ak,. 

Let E” [k] be the spectrum of filtration-preserving maps from 0: to E. (Mapping 

spectra are defined in 2.2 below.) Then the rule [k] -+ E”[k] defines a simplicial 

spectrum. 

1.9. Proposition (Kan-Dold Theorem for simplicial spectra). The functors X ++ 1x1 
and E - E” are mutually inverse equivalences of categories (between the weak 
homotopy category of simplicial spectra and the homotopy category of filtered 
spectra). 

Idea of proof. If the mapping spectra we used in defining E” had some reason- 



56 M. Weiss, B. Williams 

able properties, then we could easily define natural transformations X + 1x1” and 

IE” 1 + E. (The reader is urged to try.) These should be weak equivalences and fil- 

tered homotopy equivalences, respectively, when X is minimal and when E has just 

one cell, and therefore in general. The problem with this sketch proof is that map- 

ping spectra do not have these reasonable properties. We defer the real proof of 1.9; 

see 2.12. The result will not be used anywhere. 

Recall that the ordinary Kan-Dold theorem establishes an equivalence between 

the category of simplicial abelian groups and the category of chain complexes 

graded over the positive integers. In particular, if E is any spectrum and if X is a 

simplicial spectrum, then the simplicial abelian group 

[kl - [E, X[k]] 

determines a chain complex of abelian groups 

(*) [E,NX[Oll + [E,NX[lll + [E,NXPll +.-’ 

whose differential is induced by the face operators 

de : NX[k] +NX[k- 11. 

1.10. Definition. We call X acyclic if the homology of the chain complex (*) is zero 

for arbitrary E. 

By 1.9, the notions of simplicial spectrum and filtered spectrum are essentially 

equivalent. One can therefore ask what 1.10 looks like in the world of filtered 

spectra. The following translation turns out to be correct: A filtered spectrum E is 

acyclic if the inclusion Filt, E G Filt,+ 1 E is nullhomotopic for each k? 0. The 

spectrum E itself is then contractible, but the condition is stronger than that. 

2. The norm map and augmented resolutions 

There will be a few introductory words about spectra, smash products and map- 

ping spectra. Our point of view is that the smash product of two spectra is not a 

spectrum, but a bispectrum in the sense of Kan and Whitehead [ 151. So in this paper 

we do not rely on Boardman’s ideas regarding smash products (see [3]), nor on those 

of Adams [l], May [20], Elmendorf [lo], Robinson [28], Clapp and Puppe [7]. 

For the moment, space need not mean CW-space, and spectrum need not mean 

CW-spectrum. 

Recall from Adams [l] that a spectrum X is a sequence of pointed spaces X, , for 

n E Z, and pointed maps E, : ZXn + X,, + , . If each X, is a pointed CW-space and 

each E, is a CW-homeomorphism of ZX, with a CW-subspace of X,, , , call X a 

CW-spectrum. A function from a spectrum X to a spectrum Y is a collection of 



Automorphisms of manifolds 51 

maps (1, :X,--f Y, 1 n E Z} commuting with all the structure in sight. 

If X is a CW-spectrum and k E Z, then there is an evident injection 

{(n + k)-cells of X,} -+ {(n +- k + 1)-cells of X, + ,>, 

and we call 

lim {(n + k)-cells of X,} 
n+m 

the set of k-cells of X. A CW-subspectrum X’CX is cofinal if the injection 

{cells of X’} --f {cells of X} 

is a bijection. A map from a CW-spectrum X to a spectrum Y is an equivalence class 

of functions 

f:X’-+Y 

where X’CX is cofinal; two such functions, say f: X’-t Y and g : X”+ Y, are 

equivalent if they agree on the cofinal subspectrum X’nX”CX. Note that Y need 

not be a CW-spectrum, and if it is, the map need not be cellular. 

The singular homology group Hk(X; Z) is 

lim K+.(X,, {*>; z) 
n-c= 

for any spectrum X. If X is a CW-spectrum, then the cellular chain complex cl(X) 

of X can be defined as 

;iJc z-“(cl(X,)/cl({*))), 

so that H,(X; Z)zH,(cl(X)). 

These superfluous reminders should make the following definitions more accept- 

able. A bispectrum U is a family of pointed spaces 

(4,. I m,=~l 

and pointed maps 

a,,. : z&,.-t KM,~~ wn,. 1 hum,. -+ urn,.., 

such that all squares 

‘Z2 u,,. 
,m 

-zu m,n+l 

‘xc4 I ! a 

‘=Jm+l,n A u m+l,n+l 

are strictly anticommutative. (Anticommutativity means here that the two com- 

posite maps differ by the automorphism of .Z2 U,,,. which interchanges the two sus- 
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pension coordinates.) If each U,,. is a pointed CW-space, and if the maps a,,, and 

CC),~,. are all CW-homeomorphisms of EUm,. with a CW-subspace of U,,,+l,n and 

u m,n+l respectively, then we speak of a CW-bispectrum. A function from a bispec- 

trum U to a bispectrum I/ is a collection of maps {f,,, : U,,,. + V,,, / m, n EZ} 

commuting with all the structure in sight. 

If U is a CW-bispectrum, then there are injections 

/ 

((m + n + 1 + k)-cells of Um + I, n} 

{(m + n + k)-cells of U,,.} 

\ 
{(m+n+l+k)-cells of Um,n+l} 

and we call 

lim {(m + n + k)-cells of U,,.} 
m,n-oo 

the set of k-cells of U. A CW-sub-bispectrum U’C U is cofinal if the injection 

{cells of U’} + {cells of U} 

is a bijection. A map from a CW-bispectrum U to a bispectrum I/ is an equivalence 

class of functions 

f: U’+V 

where U’C U is a cofinal CW-sub-bispectrum; two such are equivalent if they agree 

on the intersection of their domains. 

The singular homology group Hk(U, Z) of a bispectrum U is 

lim &+m+n(Um,n, I*>; 0, 
m,n-co 

where the maps in the direct system are (a,,.), or (-l)‘“(c~,,J* as appropriate. 

For a CW-bispectrum U, define the cellular chain complex cl(U) as 

lim Eern-” (cl(K7,.)/cl({*~)). 
m,n-m 

(The chain maps in the direct system are the ones induced by Q and cc), up to sign; 

the signs are chosen as above.) Then H,(U; Z) =H,(cl(U)). 

2.1. Examples. If X and Y are spectra, then XA Y is a bispectrum, given by 

(XAY),,. := X,AYn. 

If X and Y are CW-spectra, then clearly XA Y is a CW-bispectrum, and there is an 

isomorphism of cellular chain complexes 

cl(Xr\ Y) z cl(X) @ cl(Y). 
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An important special case is the sphere bispectrum SOAS’. The suspension bispec- 

trum of a pointed space X is defined to be the bispectrum obtained from $‘A$’ 

by smashing each term with X (on the left, say). It is a CW-bispectrum if X is a 

pointed CW-space. In this situation we shall occasionally speak of pointed maps 

from X to some bispectrum U; these are just maps from the suspension bispectrum 

of X to U. (Similarly, a map from a pointed CW-space X to a spectrum Y is a map 

from XAS” to Y.) 

Suppose that we have a partition of z into disjoint subsets B, and B, which are 

both unbounded from above. This determines a map A : Z + Z x Z such that A(O) = 

(0,O) and 

1(n)--A(n-1) 
(1,O) if neBl, 

(0,l) if DEB,. 

The map h gives rise to a functor ed from the category of CW-bispectra and their 

maps to the category of CW-spectra and their maps: Let el(U), = UAcn, etc., when- 

ever U is a CW-bispectrum. The functor eA is an equivalence of categories. If 

U= XA Y as in 2.1, then e,(ZA Y) is what Adams calls a handicrafted smash pro- 

duct in [l]. 

By a combinatorial spectrum V we will mean a family of pointed simplicial sets 

{V, 1 n E Z} and injective simplicial maps J?:V, + V, + 1 for all n. (The suspension ,J5’V, 

is a simplicial set such that e.g. IEV,l is CW-homeomorphic to 2 1 V,l; see [8] .) The 

CW-spaces 1 V,I and the injections .E 1 V,l + V,, 1 then form a CW-spectrum, which 

we also denote by I’. We will also talk about combinatorial maps between combina- 

torial spectra. (As usual, maps are equivalence classes of functions.) 

2.2. Notation. If X and Y are CW-spectra, let map(X, Y) be the geometric realiza- 

tion of the simplicial set of cellular maps from X to Y, so a k-simplex in map(X, Y) 

is a cellular map from LI:AX to Y. The mapping spectrum map(X, Y) is the 

Q-spectrum whose ith term is the space map(X,S’AY). It is a CKpectrum and 

even a combinatorial spectrum. (Do not confuse the pointed space S’ and the sus- 

pension spectrum S’.) If X is merely a pointed CW-space, with suspension spec- 

trum X, then we also write map(X, Y) and map(X, Y) to mean map@, Y) and 

map(X, Y), respectively. 

2.3. Remarks. (i) There is a chain of natural homotopy equivalences connecting a 

CW-spectrum Y with the mapping spectrum map(s’, Y). See 2.12 below. The dis- 

tinction between Y and map@‘, Y) may be pedantic, but here and in Section 6 it 

is useful. 

(ii) Suppose that V is a combinatorial spectrum and f: V-t map(X, Y) is a com- 

binatorial map. It is not hard to see thatfis adjoint to, or worth as much as, a cellu- 

lar map of CW-bispectra 
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(iii) For fixed CW-spectra X and Y, there is a natural bijection 

Here I/ can be any CW-spectrum; square brackets denote homotopy classes of 

maps, and e#‘AX) is a handicrafted smash product of V and X. (Proof: Reduce 
to the combinatorial setting; then use (ii) and the fact that e@“A Y) = Y, which 

can be extracted from [l, Part III, Section 41.) 

So much for preliminaries; we can move into deeper waters again. From now on 

until Section 5, “spectrum” will mean “CW-spectrum”. Let T be a discrete group, 

and let X be a spectrum on which T acts by cellular maps; we also say that X is a 

T-spectrum. The homotopy fixed point spectrum of X is 

H’(T; X) = mapr((ET)+,X), 

the spectrum of T-maps from (ET)+ to X. (Here ET can be any contractible CW- 

space on which T acts freely by cellular maps.) The homotopy orbit spectrum of X is 

map@‘, (ET), AX> 
H,(T;X) = = 

T 

where T acts diagonally on (ET)+ AX and by the induced action (which is still free) 

on the mapping spectrum. This looks somewhat different from what was promised 

in the introduction. Our justification is that the target of the norm map to be con- 

structed is (inevitably) a combinatorial spectrum, so its source had better be one, 

too. Notice that by 2.3(i) there is a chain of natural homotopy equivalences con- 

necting H,(T,X) and (ET)+A,X. (We pretend that it is clear what (ET)+ r\,X 
means. It is not entirely clear, because T was supposed to act on X and on 

(ET)+AX by maps, not necessarily by functions. The induced action on 

map@‘, (ET)+ AX) is by functions and causes no problems.) 

The inclusion (1) + T induces a map from X=map(S’,X) =H,({l};X) to 

H,(T;X). It also induces, by restriction, a map from H’(T;X) to H’({ l};X)= 

map(SO,X)=X. 

2.4. Proposition (Dwyer). If T is finite, then there is a norm map 

Jf: H,(T;X)+H’(T;X) 

such that the composition 

x - H,(T,X) x H’(T,X) - X 

belongs to the homotopy class 5 = C f E T t. (Observe that each element of the group 
ring ZT determines a homotopy class of maps from X to X.) The norm map is 
natural in the variable X, for fixed T. 

Let us agree on the following notation for the proof. Any spectrum Y can be 
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smashed with a pointed space V, on the left or on the right; the resulting spectra 

VA Y and YA V are such that (VA Y), = VA Y, and ( YA I’), = Y, A V. Clearly I/A Y 

and YA I/are isomorphic. A spectrum Ycan also be smashed with another spectrum 

Y’, but the result will be a bispectrum, and one should note that YA Y’ and Y’A Y 

are not isomorphic bispectra in general. Then there are objects like 

Y(l)A Y(2)/\.../\ Y(r) 

where each Y(i) is either a spectrum or a pointed space. Such a smash product will 

be a pointed space if all the Y(i) are; it will be a spectrum if just one of the Y(i) 

is a spectrum, and a bispectrum if just two of the Y(i) are spectra. (We will ensure 

that no more than two spectrum factors occur.) 

Proof of Proposition 2.4. Suppose for the moment that we can find a map of 

spectra 

f: (ET)+ ASOr\( + T+ Aso 

having, briefly, the following properties. 

(i) The homotopy class off is 

~EZTGZ~(T+ A$‘). 

(ii) The map f is a TX T-map. 

We pause to explain (i) and (ii). Since (ET)+ ASOr\( is homotopy equivalent 

to So, the mapfrepresents an element in no(T+ A so). Since T+ Atjo is a wedge sum 

of copies of So, with one summand for each element of T, we can identify 

rc,(T+ Aso) with ZT. This explains (i). The group TX T acts on the spectrum 

(ET)+ ASOA(ET)+ in the obvious way. It acts on the set T by 

(a,b).g=agb-’ for (a,b)ETxTandgET; 

smash with the trivial action on So to obtain an action on T+ Aso. This 

explains (ii). 

Given such an f, construct the norm map JV as follows. Write I/= 

map@‘, (ET)+ AX) whenever that is convenient. The identity map from V to m 
map@‘, (ET)+ AX) is adjoint to a map of bispectra w 

e: Vr\S”+So/\(ET)+ AX, 

by 2.3(ii). The composite map of bispectra 

VA (ET)+ A So 

(ET)+ /‘&A~“) idAe -(ET)+ A(S”A(ET)+ Ax) 

fr\ idx 
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where p sends t/\sAx to SA tx, is adjoint to a map of spectra 

pre-N: V+ map((ET)+ A So, X) m 

by 2.3(ii). Inspection shows that pre-JVfactors through the projection 

I/+ V/T=H,(T;X) 

and through the inclusion 

H’(T;X)=map,((ET)+ ASO,X)c,map((ET)+ ASO,X). 

(Use property (ii) off.) So we obtain 

JV:H,(T;X)+H’(T;X) 

from pre-JY, and property (i) off implies that the composition 

x-H.(T;X)~H’(T;X)-+X 

is reZT. 

It remains to construct f. Since S’ is or can be identified with the geometric 

realization of a simplicial set for any ir0 (with just two nondegenerate simplices), 

the product (S’)r has a CW-structure coming from the simplicial product. Let 

(S’)r be the spectrum such that 

((SO)% = (S’K 

using this specific CW-structure; define the maps Z((~“>T)i-+((So)T)I+l in such a 

way that the various projections from (S”)r to 8’ become maps of spectra. It is 

well known that products of this type are homotopy equivalent to wedge sums; in 

particular, the inclusion 

T+ A$~-@~)~ 

is a homotopy equivalence. It induces a homotopy equivalence 

z : map@‘, T+ A So) --f map@‘, ($‘)r) 

of mapping spaces (see 2.2). Further, z is a TX T-map: the action of TX Ton the 

set T specified earlier leads to actions of TX T on source and target of z. The 

diagonal embedding 

/A : SO+ @Of 

is a O-simplex in map@‘, (S’)r) which is fixed under the TX T-action. Writing Y 

for the space of TX T-maps from ETx ET to map@‘, T+ As’), and writing Y’ for 

the space of TX T-maps from ETx ET to map@‘, (S’>r), we obtain a map 

Z: Y-Y’ 

given by composition with z. It is still a homotopy equivalence. (It is convenient to 

define Y and Y’ as simplicial sets.) Let p E Y’ be the point or O-simplex given by the 
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constant map from ETx ET to map@‘, (S’)r) with constant value ,u. Choose a pair 

(f, w), where f is a O-simplex in Y and w is a path (in the shape of a l-simplex) 

connecting z(f) with p. Since z is a homotopy equivalence, such a choice is possible; 

it is a contractible choice. The O-simplex f is then a TX T-map 

ETx ET+map(S’, T+ ASo) 

or, in adjoint form, a TX T-map of spectra 

(ET)+ r\(ET)+ A$‘- T+ ASO. 

The proof of 2.4 is complete. (It is remarkable that the sphere spectrum 8’ was 

much more deeply involved than X.) 0 

2.5. Definition. A spectrum X with T-action is induced if there exists a spectrum 

Y (without T-action) and a map T+ A Y-+X which is a homotopy equivalence of 

spectra and commutes with T-actions. (Compare the notion of an induced module 

in homological algebra; see [12].) 

2.6. Observation. If a T-spectrum X is induced, then the norm map H,(T; X)+ 
H’(T; X) is a homotopy equivalence. (We assume that T is finite.) 

Proof. In this case there is, up to homotopy, just one possible way to write the map 

r: X-+X, where TEZT is the sum of the group elements, as a composition 

X-H,(T;X)p-+H’(T;X)-X. 

(See the precise formulation of 2.4.) If T+ A Y-+X is a homotopy equivalence as in 

2.5, then H,(T;X)= Y and H’(T; X)- Y, and the broken arrow corresponds to 

the identity Y+ Y. 0 

2.7. Definition. The mapping cone of the norm map H,(T; X)+ H’(T; X) is 

denoted by I?‘(T; X). 

2.8. Remark. The functors XC H,(T, X), XH H’(T; X) and XHI)‘(T; X) from 

T-spectra to spectra have a homotopy invariance property and an exactness proper- 

ty. That is, if X-t Y is a T-map between T-spectra which is a homotopy equivalence 

of the underlying spectra, then the induced maps H.(T; X)+H,(T; Y), 

H’(T,X)+H’(T, Y) and I?‘(T;X)-+A’(T; Y) are homotopy equivalences; and 

if Xc, Y is an inclusion map between T-spectra with quotient Y/X, then the 

diagrams 

H,(T;X)+H,(T; Y)+H,(T; Y/X), 

H’(T;X)-H’(T; Y)-H’(T; Y/X), 

A’(T;X)+fi’(T; Y)+Av(T; Y/X) 
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are cofibrations up to homotopy (which means that they give rise to long exact 

sequences of homotopy groups). This is clear for H,(T; -); it is also clear for 

H’(T; -) if one remembers that cofibrations up to homotopy and fibrations up to 

homotopy are the same in the category of spectra; and it follows then for 

A’(T; -). 

It may also be asked whether the functors H,(T; -), H’(T; -) and A’(T; -), 

applied to a simplicial T-spectrum, commute with geometric realization. This is false 

in general for H’(T, -) and &‘(T; -); see 2.10. But it is correct for H,(T; -), so 

that 

IWT;X[-111 =ff.(T; 1x1) 

for any simplicial T-spectrum X. (This would be obvious if we could use the naive 

definition of H,(7’; -), from the introduction.) Proof: Write XC”) for the n-skeleton 

of X, in the sense of 1.7; allow n = m. There are straightforward maps 

ok, /\H.(T;X’“‘[k])-H.(T;dk, AX’“‘[k])+H.(T; IX(n)/) 

for n,krO, giving rise to 

u,: IH.(T; X(“‘[-])I -+H.(T; IX@)l). 

The maps u, are homotopy equivalences for finite n (by induction on n, using the 

exactness property of H,(T; -) and 1.8). By inspection, u, is simply the union or 

direct limit of the u,, so it is also a homotopy equivalence. (It is only the direct 

limit argument which fails if H,(T; -) is replaced by H’(T; -) or A’(T; -).) 

2.9. Definition. Let X be a T-spectrum. An augmented T-resolution of X is a sim- 

plicial T-spectrum X such that 

(i) X[O] =X; 

(ii) X is acyclic in the sense of 1.10; 

(iii) for each k>O, the cofibre of the degeneracy map X[O] +X[k] is an induced 

T-spectrum. 

Any T-spectrum X admits an augmented T-resolution. Namely, define a filtered 

T-spectrum E by 

Filt,E = X, 

Filti+ 1 = mapping cone of the T-map c A id : T+ A Filt; E--f So A Filti E, 

where T+ AFilt, E has the diagonal T-action and c : T+ -+ So is the map of sets 

which sends only the base point to the base point. Then apply 1.9 to obtain an 

augmented T-resolution of X. 

2.10. Proposition. Adopt the notation of 2.9, and let H’(T;X[-1) be the simplicial 
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spectrum obtained from X by applying the functor H ‘( T; -). Then, if T is finite, 

IH’(T;X[-])I =I?‘(T;x). 

If X is (- 1)-connected, then one also has 

IQH’(T;X[-])I =QI?(T;X). 

Proof. First note that the map IH’(T;X[-])I -+ Ifi’(T;3E[-])I is a homotopy 

equivalence. Indeed its cofibre is 

IEN,(T; XL-01 =ZlH,(T; U-l)/ =ZH.(T; IX/) 

by 2.8, which is contractible since 1x1 is contractible by 2.9(ii). Next, observe that 

IA’(r;x[-])(2AI(T;X[o])=A’(T;X) 

because all simplicial operators A’(T; X[m])-+E)‘(T; X[k]) are homotopy equi- 

valences. (It is sufficient to check this with m = 0, in which case it follows from 2.9 

(iii), and 2.6 and the first part of 2.8.) This proves that IH’(T; X[-])I =I?‘(T;X). 
Much the same argument can be used to prove that IQH’(T; X[-])I = QI?‘(T;X) 

if X[k] is (- I)-connected for all k?O (not just for k= 0). In this case the diagram 

IQH’(T; XI-111 + IQ~‘(T; XI-111 + IQ=.(T; XI-111 

is a fibration up to homotopy by [4,2 Lemma 5.21; here we use the connectedness 

assumption. Now 1.3 implies that IQZH,(T; X[-])I 2: QIZH,(T; X[-])I, and we 

know already that IZH,(T; ?+])I is contractible. Therefore, 

IQH’(T;X[-])l2:IQ~‘(T;X[-])/2.Q~’(T;X), 

because all simplicial operators in Qr?‘(T; 3E[-1) are homotopy equivalences. 

Suppose finally that X is (-1)-connected, but that nothing of the sort is known 

about X[k] for k>O. Proceeding as in 1.2, build a simplicial T-spectrum pox and 

a simplicial map p”X-X which is a (-1)-connected Postnikov cover in each degree 

k. Since POX is also an augmented T-resolution, we are in the special situation 

discussed before and 

/QH’(T;~“Z[-])l=QI?‘(T;~oX)=QI?‘(T;X). 

But the maps QH’(T; v’x[k])-+ QH’(T; X[k]) are homotopy equivalences for all 

kz0, since the homotopy groups of H’(T;p’X[k]) are trivia1 in dimensions r0 

(see 1.2 and 2.8). Therefore, 

JQH’(T; X]-])I 2: JQH’(T; ~OX]-])J =QP(T;x). q 

The norm map of 2.4 has a more simple-minded chain level analogue. Suppose 
that D is a chain complex of abelian groups (graded over the integers), equipped 

with an action of the group ring ZT. Write D, for Z@,,D and DT for 



66 M. Weiss, B. Williams 

Homrr(Z,D), where Z is the trivial (left or right) ZT-module. Let P be a left pro- 

jective resolution of 77 over the ring ZT; since ZT has a standard involution sending 

the group elements to their inverses, we may also use P as a right projective 

resolution. The bottom row of the commutative diagram 

‘5 

D-D 

POZTD -D,-----+DT- HOm,,(P,Dh 

where +E ZT is the sum of the group elements, defines an algebraic norm map. If 

D is the cellular chain complex of a T-spectrum X, and if P is the cellular chain com- 

plex of ET, then the cellular chain complex of H,(T;X) maps to POzTD, and the 

cellular chain complex of H’(T; X) maps to Hom,,(P, D). 

2.11. Observation. The square of chain maps 

cl(H$( T; X)) - cl(H’(T;X)) 

I I 

PO,, D - Hom,,(P, D) 

is strictly commutative. (The upper horizontal arrow is the map of cellular chain 

complexes induced by the norm map of 2.4, and the lower one is the algebraic norm 

map.) 

2.12. Postponed proofs. We return to the mapping spectra of 2.2 in order to prove 

1.9 and to compare map@‘, X) and X, for any spectrum X. B 
Choose a specific partition of Z into two disjoint sets unbounded from above, and 

write ek for the resulting functor from bispectra to spectra. From [l, Part III, 

Section 41 one can extract a chain of homotopy equivalences beginning with an ar- 

bitrary spectrum X and ending with e,(S’AX), or with eA(XASo) if preferred. 

Therefore 

map@‘, Y) = e,(map(S’, Y) A So) (by Adams) B 
=el(Sol\ Y) (by evaluation) 

=Y (by Adams). 

The second homotopy equivalence is induced by the evaluation 

map(SO, Y)r\ So+ SoA Y 

(which is adjoint to the identity on map(S’, Y), in the sense of 2.3(ii), and which 

is a homotopy equivalence of bispectFRemember that map@‘, Y) = map@‘, Y). 

We conclude that 
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map@‘, Y) = Y 

by a natural chain of homotopy equivalences. 

To prove 1.9, we ought to construct natural transformations X -+ lXld and 

IE” I+ E, where X denotes simplicial spectra and E denotes filtered spectra. But it 

will be easier, and quite sufficient, to construct natural transformations 

o1 : map(SO,X)-+ 1X1”, Us: 1~~1 I\sO+SOAE. 

(Here map(S’, X) is the simplicial spectrum given in degree k by map@‘, X[k]). The B 
map u2 is one of filtered bispectra.) The functors E-t So/\E and E-EA So from 

filtered spectra to filtered bispectra are equivalences on the homotopy categories; 

the functor X ++ map@‘, X) is related to the identity functor X H X by a chain of - 
natural isomorphisms (in the weak homotopy category of simplicial spectra). 

Therefore u, and u2 are indeed sufficient, provided they can be shown to be (weak) 

homotopy equivalences. 

Define ur in degree k to be the composition 

f map@‘, WI) - filtmap(d: /\$‘,A: AX[k]) 

filtmap(di A So, 1x1) - 

where f is obtained by smashing all maps in sight with the identity d “, -td “, , and 

g is composition with the canonical map d “, A X[k] + IX 1. We write 

filtmap( a..) 

for the subspectrum of the appropriate mapping spectrum consisting of the 

filtration-preserving maps. Note that 

filtmap(dk,AS’, lXl)=filtmap(d:, IX/)= lX(“[k]. 

Next, define u2 in such a way that the composition 

filtmap(d$ A8’,E)A(d$ AS’>- - (E”[k]/\d:)AS” 

_SOAE ( 
“2 

(E”I r\_S” 

agrees with the evaluation map (adjoint to the identity on filtmx(d $ A So, E) in 

the sense of 2.3(ii)). Complete the proof of 1.9 by observing that u, is a weak 

homotopy equivalence when X is minimal, and u2 is a filtered homotopy 

equivalence when E has only one cell. 0 
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3. Linear duality 

Throughout this section we fix an integer n r0 and investigate duality in the 

category ~~9. Recall that the objects of en9 are covariant functors C: po[n] + $27, 

where po[n] is the partially ordered set of faces of the simplex d”. As explained in 

the outline, ~,8 inherits from $3 the structure of a category with cofibrations and 

weak equivalences. Occasionally it is useful to know that en9 also inherits from $21 

a cylinder functor; see [41, Section 1.61. (The cylinder functor in $B is given by the 

usual construction which converts an arbitrary chain map into a cofibration, re- 

placing its target by a mapping cylinder.) 

A fundamental difficulty in dealing with Q,$Z is that a weak equivalence f: B-t C 

in ,Q,GB need not have a homotopy inverse. One way to avoid it is to impose con- 

ditions on B and C. Let p^o[n] be the partially ordered set of CW-subspaces of the 

standard simplex d”, so that po[n] Cp^o[n]. Call a functor C: po[n] + GB well 

behaved if it extends to an intersection-preserving functor C : p^o[n] + $21. The ex- 

pression “intersection-preserving” means that, for any two CW-subspaces 

X, Ycd”, the square 

C(xn Y) - Q’(Y) 

I I 
C(X)- C(XlJ Y) 

consists of cofibrations and is a pushout square; it also means that C(0) = 0. Note 

that C is determined by C up to unique isomorphism if it exists. We shall therefore 

write C(X) instead of C(X) whenever C does exist and X is a CW-subspace of d”. 

If C is a well-behaved object in Q,$@, and D is any object, we let 

HomR(C, D) c n HomR(C(s),D(s)) 
s~Pdn1 

be the chain subcomplex consisting of those collections (g,) SE po[n]} which are 

natural in s. (We explain this a little more: A j-chain in nHomR(C(s),D(s)) is a 

collection {g,) s E po[n]}, where each g, : ZjC(s)+D(s) is a map of graded R- 

modules which need not commute with differentials. Such a collection {g,) is 

natural if the square 

_zjC(.s) A D(s) 

1 
PC(q) 2 

I 
D(q) 

is commutative whenever s, q are elements of po[n] with ssq.) Observe that 

Hj(Hom,(C,D)) is the set of homotopy classes of natural chain maps ZjC+D. 

(This is perhaps a good moment for saying that the sign conventions we use in 

defining Horn and @ of chain complexes etc. are those of Dold 191.) 
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3.1. Lemma. Let C, D and D’ be objects of e,GB, and assume that C is well 
behaved. Let f : D -+ D’ be a weak equivalence. Then the homomorphism of graded 

groups 

H,(HomR(C, D)) + H,(HorMC, D’)) 

induced by f is an isomorphism. 
Further, suppose that E+E’+E” is a short exact sequence in en9 (so that E-, 

E’ is a cofibration with quotient E”). Then the resulting sequence of chain com- 
plexes 

Hom,(C,E)-+Hom,(C,E’)-+Hom,(C,E”) 

is also short exact, giving rise to a long exact sequence of homology groups. 

Proof. We note that the chain complexes HomR(C, D) etc. have natural filtrations: 

Let Filt,(Hom,(C, D)) consist of those natural collections (g, ) s E po[n]} which 

satisfy g, = 0 whenever the dimension of s is <n -i. By inspection, the filtration 

quotients take the form 

Filti(.+.)/Filtj_,(...)z fl Hom,&C(s/&),D(s)) 
dim(s) = i 

where as is the entire boundary of the face s and C(s/&) is an abbreviation for the 

quotient of the cofibration C(as)-+ C(s). It follows by induction on i that the 

homomorphisms 

H,(Filt; (Hom,(C, D))) +H,(Filti(Hom,(C, D’))) 

induced by the weak equivalence f: D+ D’ are isomorphisms, with - 15 is n. For 

i= n this is what we want. The exactness statement in 3.1 can be proved in the same 

way, using the natural filtrations of HomR(C,E) etc. and induction on i. 0 

A simple consequence of 3.1 is that a weak equivalence f: C-+ D is a natural 

homotopy equivalence provided C and D are well behaved. The homotopy inverse 

g : D-t C can be found in the class [g] l &,(Horn,(D, C)) which maps to 

[id] E H,(Hom,(D, D)) under f. 

3.2. Lemma. For any object C in Q,,c$? there exists a well-behaved object c in @,621 
and a weak equivalence f: C+ C. 

Proof. We proceed inductively. If s E po[n] and dim(s) = 0, put C(s) = C(s) and f, = 
identity : C(s) + C(s). Suppose for induction purposes that C(s) and f, : C(s) -+ C(s) 

have already been defined for all s E po[n] such that dim(s) <k. Here k is some in- 

teger with 15 k< n. Let q E po[n] have dimension k. We are forced to define C(aq) 
as the direct limit of the C(s) for s< 4. Let C(q) be the mapping cylinder of the com- 

posite chain map 
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@q) = 1% C(s) 
{.&I 

- I@ C(s) - C(q) 

where the direct limits are taken over all s with s < q, and the arrow on the right uses 

the fact that C is a functor. Let & : C(q)-+ C(q) be the projection of the mapping 

cylinder, and to the inclusion 8qc+q associate the evident inclusion of C(6’q) in 

C(q). This completes the induction step. (A quicker way to describe C is to say that 

C(q) = hocolim C(s); 
slsq 

see [4].) 0 

3.3. Remark. The rule C-C is a functor from eng to itself, and the projection 

maps f: C-+C define a natural transformation from this functor to the identity. 

3.4. Lemma. For any object C in ~,a there exists a finitely generated object B in 
@,,8 and a weak equivalence f : B-t C. (Call B finitely generated if the direct sum 
of all B(s), is f.g., where s~po[n] and r EZ.) 

Proof. By 3.2 we may assume that C is well behaved, and we will arrange B to be 

well behaved also. Suppose for induction purposes that B(X) and fx : B(X) -+ C(X) 
have already been defined for all CW-subspaces XCA” of dimension <k, where 

k is some integer with 05 ksn. For any face SCA” of dimension exactly k, choose 

a f.g. chain complex B(s) in 68, a cofibration B(as)-B(s) and a homotopy 

equivalence f, : B(s) + C(s) such that the diagram 

B(&) = B(s) 

C(k) = C(s) 

is strictly commutative. This is not difficult, since B(%) is f.g. and C(s) is homotopy 

equivalent to a f.g. object of g by the very definition of g. If XCA” is a CW- 

subspace of dimension <k+ 1, we are forced to define B(X) as the direct limit of 

the B(s), where s ranges over the faces of d” contained in X. This completes the in- 

duction step. q 

Suppose that U is any covariant functor from po[n] to the category of chain com- 

plexes of abelian groups (graded over the integers). For Jo Z, define the total 

homology group Hj(U) to be the abelian group of homotopy classes of natural 

chain maps 

where cl denotes the functor sending s E po[n] to cl(s). (See the outline.) These total 

homology groups have a strong homotopy invariance property. Namely, if U’ is 
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another covariant functor from po[n] to the category of chain complexes, and if 

g: U+ U’ is a natural chain map (i.e. a natural transformation) such that 

g,: U(s)+ U’(s) induces an isomorphism in homology for all SE po[n], then the 

map H,(U) --f H,( U’) given by composition with g is also an isomorphism. To prove 

this, define a chain complex Hom(c1, U) in such a way that H,(Hom(cl, U)) is the 

total homology of U; do the same for U’, and argue as in the proof of 3.1. The 

point is that the functor cl from po[n] to chain complexes is well behaved (over Z), 

in the sense that it extends to an intersection-preserving functor on $[n]. 

Suppose next that B and C are objects in e,g, and let B’OR C be the covariant 

functor from po[n] to the category of all chain complexes given by the rule sH 

B(s)‘OR C(S). Any SE po[n] determines an injective monotone map [m] -+ [n] 

whose image consists of the vertices of s, with m = dim(s). Therefore s determines 

a restriction functor ~,a -Q,GE whose value on an object B we denote by Bl,. We 

will define a cohomology slant product 

Hj(C(s);R)OHk(B’O, C)+Hk-j(Bl,), 

f@r-f\l? 

wherej, k are arbitrary integers, and HJ(C(s); R) is the same as H_j(Hom,(C(s),R)). 

(Compare [9, Chapter VII, 11.11.) The groups H,(B’ OR C) and H,_j(Bl,) are, of 

course, total homology groups as defined above. 

Represent a typical element in Hj(C(s);R) by a chain map 

f: C(s) -r.Z’R 

where R is interpreted as a chain complex concentrated in degree zero. Represent 

a typical element in H,(B’ OR C) by a natural chain map 

II : ZkcKd --f B(q)’ OR C(q) 

where q ranges over the objects of po[n]. For any q%s we then have a chain map 

or 

Zk-kl(q) + B(q), 

,hl(q)-tCjB(q), 

by composing 

Z%l(q) rl -B(q)’ OR C(q) 
id Of. e(a s) 

b B(q)’ OR ZjR. 

Here e(q, S) is the chain map from C(q) to C(s) induced by the inclusion q C s. Let- 

ting q vary (subject to the restriction qls), we see that we have defined an element 

f \ q in Hk~j(Bl,). (Remember that the definition of the total homology groups 

does not mention any R-module structures. It is sufficient to have an isomorphism 

of chain complexes of abelian groups 

B(q)’ OR ZjR -/ZjB(q).) 
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3.5. Definition. A pairing between objects B and C in q,,G# is a natural chain map 

q : cl(s) + B(s)’ OR C(s) 

where s ranges over the objects of po[n]. Such a pairing 1;1 is called nondegenerate 

if the homomorphisms 

Hj(C(s);R)4Lj(B,,); v-1 - [.I-\ VI 

are isomorphisms for any Jo Z and SE po[n]. 

3.6. Proposition. Every object B in Q,~Z occurs in a nondegenerate pairing 

~:cl+B’@,C 

with suitable C. (We have written cl for the functor on po[n] sending s to cl(s).) 

Proof. By 3.4 and the invariance property of total homology, we may assume that 

B is finitely generated. Write B(q)-* instead of HomR(B(q),R), for any q E po[n]. 

Let VB be the object of e,9Z given by 

VB(s) = @ B(q)- *@cl(q) -a 
q5.Y 1 

(The relations - are the usual ones: e*(f) @ o -f @e,(u) whenever u E cl(q) and 

f E B(q’)- *r with q< q’5.s. We have written e for the inclusion q&q’.) 
For each SE po[n] the obvious chain map from B(s)~*@c~(s) to VB(s) has an 

adjoint 

cl(s) + B(s)‘@, VB(s) 

which is natural in s. So we have a pairing q between B and VB. Observe that VB 

is well behaved! 

We now prove that q is nondegenerate. Suppose for this purpose that E is any 

object in ~~$27. There are homomorphisms 

\~::Hj(Hom,(VB,E))~Hj(B’OR E) 

for j E Z, given by the usual recipe. (A natural chain map f: Z’VB- E gives rise to 

a composite map 

rl 
ZJcl - B’& .Zj VB 

id@f 
---+B’& E 

which represents an element in Hj(Bt OR E).) These homomorphisms are isomor- 

phisms. In fact, it is clear that the chain map Hom,(VB, E) + Hom(c1, B’ OR E) 

by which they are induced is an isomorphism. Now fix an element s in po[n] and 

specify E as follows: 

E(q) = 
R if qss, 
0 otherwise. 



Automorphisms of manifolds 73 

(The maps E(q) +E(q’) are to be identity maps R -+ R whenever qr 4’1s.) Then 

Hj(Hom,(VB,E)) =H-j(B(s); R) and Hj(BtBR E) =Hj(Bl,), and the homomor- 

phisms \q just defined agree with those defined earlier in 3.5. Since they are 

isomorphisms, rl is nondegenerate. So we can take C= VB in 3.6. 0 

3.1. Proposition. Let rl: cl-B’ OR C be a nondegenerate pairing as in 3.5, and 
assume that C is well behaved. Then for any object E in ~,9, the homomorphisms 

Hj(Hom,(C,E))-tHj(B’O, E); f-f i&r 

are isomorphisms for arbitrary j E Z. 

Taking j = 0 for example, one obtains that up to natural homotopy every pairing 

between B and E is induced from q via a natural chain map f: C-+E, unique up to 

natural homotopy. To put it differently, nondegenerate pairings have a universal 

property. 

Proof. Again, there is no harm in assuming B to be finitely generated. In this case 

we already know that the statement is true for the canonical nondegenerate pairing 

~/:cl-+B’@, DB. 

If p : cl + B’ OR C is another nondegenerate pairing, let f: VB --f C be the unique 

natural chain map such that the composition 

II 
cl-Bt@, VB- id@f Bt& C 

agrees with ,u. The commutative diagram 

H*(C(s);R) 
f* 

- H*( V’B(s); R) 

now shows that f *: H*(C(s); R)-+H*(VB(s); R) is an isomorphism for every 

s~po[n]. Since VB(s) is f.g. and C(s) is homotopy equivalent to a f.g. chain 

complex, it follows that f,: VB(s)-+ C(s) is a homotopy equivalence for all s. 

Therefore f is a weak equivalence. By 3.1 and subsequent remarks, f is a natural 

homotopy equivalence. It is then clear that p must have the same universal property 

asq. 0 

3.8. Proposition. Let q : cl -+ B’ OR C be a nondegenerate pairing between objects 
B and C in ~~69. Then the pairing obtained by composing F,J with the switching 
isomorphism, 

clA B’& C- Cf& B, 

is also nondegenerate. 



14 M. Weiss, B. Williams 

Proof. By the preceding discussion and by 3.4 we can assume that B is f.g., that 

C= VB and that q is the canonical pairing between B and VB. Fix SE po[n]. We 

have to show that a certain homomorphism from H*(B(s);R) to K*(VBl,) is an 

isomorphism. 

Observe that the functor V : B+ VB is an exact functor from the full subcategory 

of f.g. objects in e,g to itself. (See [41].) Therefore the functor B++H_,(VBI,) is 

a cohomology theory in the variable B. (That is, it associates isomorphisms to weak 

equivalences, and long exact sequences to short exact sequences 0 + B --f B'-+ B"+ 0 

of f.g. objects in e,s.) The natural homomorphism H*(B(s);R)+H_,(VBI,) 

under consideration is a transformation of cohomology theories. 

Next, observe that any object B in @,,a has a canonical filtration by subobjects 

Filt, B, where 

(Filt, B)(s) = 
B(s) if dim(s)? n - i, 
o 

otherwise 

whenever -1 ~i<n. The quotients Filti B/‘Filti_ 1 B split as direct sums of objects 

concentrated over a single face. (An object E of Q,% is said to be concentrated 

over a single face q if E(s) =0 for sfq.) Further, a f.g. object in ~~58 which is con- 

centrated over a single face has a canonical filtration whose quotients are concen- 

trated in a single dimension TE Z. It is therefore sufficient (by the five lemma) to 

show that the homomorphism H*(B(s);R)+H~,(VBI,) under consideration is an 

isomorphism if B is concentrated in a single dimension r E Z, and over a single face 

q E po[n]. We leave this to the reader. 0 

3.9. Remark. A consequence of 3.7 and 3.8 is that maps can be dualized. Let 

q : cl -+ Bt OR C and /J : cl -+Dt OR E be nondegenerate pairings in e,,g. Suppose 

also that B and E are well behaved. Then there is a one-one correspondence I+U 

between homotopy classes of natural chain maps B-+ D and homotopy classes of 

natural chain maps E+C. If we identify such homotopy classes with elements of 

H,(Hom,(B, D)) and He(Hom,(E, C)), respectively, then I,V is characterized by the 

equation f \ v] = w(f) \ p which holds in the total homology group Ho(Dt OR C). 

Here is some notation which will help us to formulate the main result of the 

section. The category of all CW-spaces and their cellular maps acts on the category 

of all chain complexes and chain maps: if X is a CW-space and Y is a chain complex 

(graded over Z), then we let 

X. Y = cl(X)@ Y 

where cl(X) is the cellular chain complex of X. In practice, X will be a simplex dj 

for some j. 

Now fix an object B in ~~58. We wish to state and prove, in a categorical way, 

that B occurs in an essentially unique nondegenerate pairing. (From 3.6 we know 

already that it occurs in some nondegenerate pairing.) Let 9B be the simplicial 
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category whose objects in degree j are the nondegenerate pairings 

where C is an arbitrary object in ,~,g and where cl is the functor s++ cl(s) on po[nl. 

(We have taken the liberty to speak of nondegenerate pairings because the natural 

chain map 

d j. cl(s) --f point . cl(s) = cl(s), 

with s~po[n], is a natural homotopy equivalence.) A morphism in degree j, say 

from ~:dJ~cl+B’@R Cto q’:dJ. cl+B’ OR C’, is a morphism g : C-t C’ in @,&Z 

such that q’= (idBOg). v. 

3.10. Proposition. The nerve of PB is contractible. 

Comment and proof. Nerves of categories are defined in [31]. The nerve of a 

category &‘is a simplicial class v(JQ); it is not always a simplicial set, because we 

do not wish to assume that d is a small category. In fact, we will be considering 

simplicial categories &having the property that the connected components of the 

simplicial classes Oh(d) and Mar(d) are simplicial sets (which may be a relief to 

the reader). The nerve of a simplicial category d is a bisimplicial class v(d) which 

we can interpret either as a contravariant functor 

[A - vk4A) 

from d to simplicial classes, or as a contravariant functor 

from d to simplicial classes. Here v,(d) is the simplicial class whose class of j- 

simplices is the class of r-simplices of v(&[j]). 

A simplicial class will be called contractible if any simplicial map from a simplicial 

set to it can be factored through a contractible simplicial set. (A simplicial set will 

be called contractible if its geometric realization is.) There is a similar definition for 

bisimplicial classes, such as the nerve of gB. 

For the proof of 3.10, choose a specific nondegenerate pairing 

such that D is a well behaved object in ~~8. This is possible by 3.6 and 3.2 (and 

by the invariance property of total homology). Let & be the simplicial category 

whose objects in degree j are the morphisms 

f:Aj-D-C 

in ~~9, where C is arbitrary and f is a weak equivalence. A morphism in &[ j], say 

from f: Aj. D-tC to g: Aj- D+C’, is a morphism e: C-+C’ in ,o,G@ such that 

g = e. f. It is clear from this description that &[j] has an initial object for each j? 0; 
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therefore v(&[j]) is contractible for all jz0, and therefore v(d) itself is con- 

tractible. 

The pairing ,U gives rise to a simplicial fun&or 

\/l:.xz-gB 

which sends an object f: dj- D+ C in &[j] to the object in &[j] obtained by 

composing the maps 

We now claim that the simplicial maps 

induced by \,D are homotopy equivalences, for all r>O. (This implies that v(d), 

which is contractible, is homotopy equivalent to v(&), which is therefore also con- 

tractible.) 

For r= 0 we argue as follows. The simplicial class vO(d) = Ob(JQ) is a disjoint 

union of simplicial sets X(C), where the j-simplices of X(C) are the weak 

equivalences from Ai. D to C. The disjoint union need only be taken over all C in 

&$.B which are weakly equivalent to D. Each X(C) is a Kan simplicial set whose 

homotopy groups/sets are, by inspection, 

Hi (Hom,(D, C)) 

7r; (X(C)) z 

i 

if i > 0; 

the subset of N,(HomR(D, C)) consisting of all 

homotopy classes of weak equivalences from D 

to C, if i=O. 

Similarly, the simplicial class vO(PB) = Ob(P$) is a disjoint union of simplicial sets 

Y(C), where the j-simplices of Y(C) are the nondegenerate pairings V: Ai- cl-t 

B’ OR C. Here the disjoint union need only be taken over all C in Q,GB which occur 

in a nondegenerate pairing with B. Each Y(C) is a Kan simplicial set whose 

homotopy groups/sets are 

r 

H@’ OR C) if i> 0; 

7c;( Y(C)) = 
the subset of N,(B’@, C) consisting of the 

homotopy classes of nondegenerate pairings 

q: cl-+Bt@, C, if i=O. 

It is now clear from 3.7 that \,u maps each X(C) by a homotopy equivalence to 

Y(C). That is, we have checked our claim for r=O. 

The argument for r> 0 is similar. Just note that 

v,(4 = LI X(C) x a,(C), v,(%) = 1l Y(C) x a,(C), 
C c 

where C can be any object in @,,9 weakly equivalent to D, and where a,(C) is 

the class of diagrams of the form x0-+x1+ 0.. +x, in we,9 such that x,=C. 
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(The prefix w in w,~~5@ denotes the subcategory of Q,&@ consisting of the weak 

equivalences.) 0 

3.11. Digression. We return to Definition 3.5 in order to discuss its geometric roots. 

Usually those objects in Q,@ which arise in geometric situations are well behaved. 

For a well-behaved object B in @,9 there are isomorphisms expressing the total 

homology groups Hj(Bl,) as ordinary homology groups: 

for any SE po[n] and Jo Z. As usual, B(s/ds) abbreviates the quotient of the co- 

fibration B(d.s)-rB(s). To obtain these isomorphisms, say ys, observe that any 

natural chain map ,Zjcl(q) --$ B(q) defined for all q I s gives rise, by specialization, 

to a chain map _Zjcl(s/&s)-t B(s/ds); this defines ys since cl(s/&) =Z’dim(s)Z. For 

fixed s, the map ys is a natural transformation of homology theories on the 

category of well-behaved objects in e,,$B. So we can prove that it is an isomorphism 

by decomposing the well-behaved objects into simpler (but well-behaved) pieces. 

(The same method was used in proving 3.8. We leave the details to the reader.) The 

conclusion is that the definition of nondegeneracy in 3.5 can be given a more 

familiar form if one of the participants in a pairing 

r/:cl+B’@, C, 

say B, is well behaved. In fact, one is reminded of Poincare duality for manifold 

pairs etc.. 

So let A4 be a compact manifold modelled on fRk x A”. This means the following. 

Write 92 for the pseudogroup consisting of all homeomorphisms 

where o, and w2 are arbitrary open subsets of Rk x A” and where 

I,N(O~ n (lRk x d,O”)) = o2 fl (lRRk x d;A”) 

whenever Oriln. (See [17, p.11.) A manifold modelled on Rkx A” is a Hausdorff 

space M equipped with a complete atlas with charts in Rk x A” and with changes of 

charts in EJ. Given such an M, and given a CW-subspace XcA”, let M(X)cM 

consist of those points which are taken to fRk x XC Rk x A” by some chart. For 

example, if sCA” is any face, then M(s) is an ordinary manifold with boundary 

M(&s). In particular, M=M(A”) itself is a manifold with boundary M(dA”). See 

also [6] for a less abstract definition (mock bundle over A”), or [24]. 

Working over the ring R = Z for the moment, we can associate with A4 an object 

C in en&Z by letting 

C(s) = singular chain complex of M(s) 

for s E po[n]. (We assume that M is compact.) Then C is well behaved; and for each 

CW-subspace XC A” there is an inclusion of C(X) into the singular chain complex 
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of M(X) which is a homotopy equivalence (though not an isomorphism in general). 

Using an Alexander-Whitney diagonal approximation we obtain a chain map 

AW : C(S) --f C(S) @ C(S) 

which is natural in S. If A4 is also oriented, which we will assume, then the fun- 

damental class in Hk+,,(M, cM4; Z) z Hk+n(C(dn/&ln)) can be interpreted, as we 

have seen, as a total homology class in Hk(C). Represent this by a natural chain 

map 
24 : Pcl(s) + C(S) 

with s in po[n]. Then 

AW.u:zkcl+C@C 

or equivalently 

AW.M:C~+C@~-~C 

is a pairing of C with JJPkC. It is nondegenerate, as can be seen from the new 

definition of nondegeneracy given just above. 

The construction can be refined in two respects. Firstly, there is no need to be 

content with the Alexander-Whitney diagonal approximation. A more powerful 

machine is the Eilenberg-Zilber diagonal approximation which, for any space Y 

with singular chain complex sg(Y), gives a Z,-equivariant chain map 

EZ: W@sg(Y)+sg(Y)@sg(Y) 

where W is the usual projective resolution of z over Z[Z,]. (Here Z, acts on the 

left-hand side by acting on W, and on the right-hand side by switching factors.) 

Using EZ instead of AW, and using the same notation as before, we obtain a natural 

chain map of the form 

which is Z,-equivariant and nondegenerate. If k = 0, this is a symmetric pairing of 

C with itself, as defined in the outline. 

Secondly, the construction can be improved to give nondegenerate (symmetric) 

pairings over the ring Zrrt(M), if we assume that M is connected. There is then no 

need to assume that A4 be orientable; instead, the orientation behaviour of M can 

be encoded in the involution on &r,(M). 

These refinements are discussed in much more detail by Mishchenko [21] and 

Ranicki [25], but only when n is 0 or 1. 

3.12. Remark. Everything in this section, with the exception of 3.11, has a filtered 

version in the following sense. Let B be an object in ~,a equipped with a filtration 

O=Filt,BcFilt,BC ... CFilt,B=B 

such that the inclusions FiltiBGFilt;+, B are cofibrations in e,g. Filtered objects 
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of this type and their filtration-preserving natural chain maps (over R) form a 

category Y’Q,~. It is a category with cofibrations and weak equivalences. 

Given two objects B and Cin &Q,$ZJ, and given any s~po[n], define B(.s)'@,C(s) 

to be the chain subcomplex of B(s)' OR C(s) generated by all chains b@c such that 

b~Filt;B and CE Filtj C, with i+j= k+ 1. Write B' OR C for the functor s--t 

B(s)'@, C(s), and call B'OR C the filtered tensor product of B and C. 

A filtered pairing between B and C is then, by analogy with 3.5, a natural chain 

map of the form 

cl+B’@, C 

where cl denotes the functor SH cl(s) on po[n]. Such a filtered pairing induces 

several pairings in the sense of 3.5, namely, 

cl + Filt, B' OR Cofilt, ~; C 

where Cofilt k_i C is the quotient of the cofibration Filt,_, C+ C, and where 

0 I is k. If these are all nondegenerate, call the filtered pairing nondegenerate. 

We are mostly interested in the filtered version of 3.10; this follows from the 

filtered version of 3.7, whose proof is almost identical with that of the unfiltered 

version. 

Our use of the symbol Bin .Y,Q,~ calls for an apology. Waldhausen, in [41], 

defines, for any category g with cofibrations and weak equivalences, the category 

&?Z whose objects are diagrams in % of the form 

Ao,o~Ao,l~Ao,2-‘...~Aok 

1 1 1 1’ 

A,,o+A1,1 -+A1,2+ ... _Al,k 

1 1 1 1 

A2,o-tA*,,-*A2*~...~A2k 

1 1 1’ 1’ 

i i i i 
4T,0+Ak,I+4,2+ ... -*Ak,k 

in which any horizontal arrow is a cofibration, every square 

Ai+ l,jMA I+ l,j+ 1 

is a pushout, and A,; is the zero object for all i. Such a diagram is, however, 

determined by its top row up to unique isomorphism. It is sometimes convenient to 

forget the other rows, as we have done in describing Yke, 9’; but in other situations 

it is better to keep them, as Waldhausen explains [41, p. 3291. In any case the two 

definitions give rise to equivalent categories. 
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3.13. Remark. Let rl be a pairing between objects B and C in Q,,$?&, as in 3.5. We 

saw that such a pairing determines homomorphisms 

\rl:H*(C(s);R)+HUBi,) 

for all s E po[n]. By the same procedure, one obtains homomorphisms 

\rl :H*(C(s);~)~H-,(Bl,;JCt) 

where & is any left R-module and 

H*(C(s);.M =K*(Hom,(C(s), ~0, 

&(BI~;““~)=&(B’O, J$). 

Here B’ OR dd is the functor on po[n] sending s to the chain complex B(s)’ OR A. 

Note that H_,(Bl,;R) is just H_.(Bl,). It turns out that 

\I? :H*(C(s);jtL)jH-,(Bl,;~) 

is an isomorphism for arbitrary & if it is an isomorphism for &= R. In proving 

this we may assume that B is well behaved, and by 3.11 we may replace the total 

homology group H_j(B~,;~) by an ordinary homology group H_j(B(s/&s);dtf). 

The assumption that 

\~:H*(C(s);R)+H_,(B(s/ib);R) 

is an isomorphism just means that the underlying chain map 

\ q : Hom,(C(s), R) + B(s/&)’ 

of right R-module chain complexes is a homotopy equivalence (since C(S) and 

B(s/&) are homotopy equivalent to f.g. projective chain complexes). Therefore 

\v : H*(C(s);JG1)~H_,(B(s/as);~) 

is an isomorphism. 

4. From L to K 

The organization of this section corresponds roughly to that of the outline. We 

begin with a thorough description of the involution on K69~&68, the Wald- 

hausen model of Q(R). 

Let WG@ be the subcategory of 9 having the same objects as g,, but only weak 

equivalences (= homotopy equivalences) as morphisms. Let xw8 be the simplicial 

category whose objects in degree j are nondegenerate pairings of the form 

where B and C are arbitrary objects in wg, and where H is identified with the 

cellular chain complex of a one-point space. (Note that A’. Zzcl(Aj).) A mor- 

phismindegreej,sayfrom(~:A~~L~B’~,C)to(~:Ai~Z-+D’~~E),shallbc 
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a pair (f: B-tD, g : E-t C) of morphisms in wg such that 

(fOid.).rl=(idDOg).~::dJ~~DtO, C. 

Note the direction of g. 

4.1. Lemma (Compare Vogel1 [39, 1.151; beware different notation.) The forgetful 
functor 

A :xw63--+w93, (~:Aj.Z+B’@, C)++B 

induces a homotopy equivalence of nerves. 

Comment and proof. We regard WGZJ as a simplicial category in a trivial way, so that 

wGB[j] = w8 [0] = w5Z~ for all jr 0. Then 2 is a simplicial functor. 

The proof uses a version of Quillen’s Theorem A [22] for simplicial categories. 

This is stated as Theorem A’ in [43, Section 41, together with an addendum which 

we also need. 

For every object B in ~$8, let A/B be the simplicial category whose objects in 

degree j are pairs (q,f) where q is an object in xw&Z [ j] and f: A(q) + B is a morphism 

in w$Z. (Waldhausen calls 2/B the left fibre of I over B.) According to Theorem 

A’ and addendum we only have to prove that the nerve of A/B is contractible for 

any B in wG@. 

Those objects in A/B which have the form (r,f) with f = id, form a full sub- 

category of A/B. It is the opposite category of &PB in 3.10. The inclusion Pip-A/B 
has an adjoint functor ,I/B+LF$~ which sends an object 

(r/:Aj.Z+C’@, E,f:C-tB) 
in 2/B to 

((f@idE)-q:Aj.Z+B’@R E) 

in .Y!Y$‘~. Therefore the nerve of A/B is homotopy equivalent to that of Pip, which 

we know to be contractible from 3.10. See also [22, Section 11. We stress that 3.10 

has one interpretation for each nz0; here we take n =O. 0 

There is a filtered version of 4.1, as follows. Let wP~~ be the subcategory of 

~$9 (see 3.12) having the same objects as &$I@, but weak equivalences (= filtered 

homotopy equivalences) only as morphisms. Let xwY’$Z be the simplicial category 

whose objects in degree j are the nondegenerate pairings 

r/:Aj.Z-tB’@,C, 

where B and C are objects in wu?,g. (The definition of morphisms follows the 

pattern above.) Using the same ideas as before, we have 

4.2. Lemma. The forgetful functor 

induces a homotopy equivalence of nerves. q 
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Now recall that Waldhausen, in [41], makes the rule [k] H w&g into something 

like a simplicial category, i.e. a contravariant functor from d to the category of 

categories. The face functors d;: w&F?,+ wJJ_,g are defined for Or is k by 

Filtj (d, C) = 

: 

Filtj C if i>O, i>j, 

Filtj + 1 C if i>O,isj, 

Filtj, 1 C/Filt, C if i = 0 

where C is in w&g and where O<j< k. The degeneracy functors si: wUk$J-+ 

wyji+,52l are given for Osisk by 

Filtj (si C) = 
Filtj C if j%i, 

Filt,_, C ifj>i 

where O<jsk+l. (We say “something like a simplicial category” because the 

simplicial identities do not hold strictly, but only up to natural isomorphism. 

Waldhausen avoids the problem by using his luxurious definition of &( .e.), the 

one we sketched at the end of 3.12. This results in an honest simplicial category 

WY: LB. Such a modification will be understood in the sequel. Compare [33] and 

1351.) The rule [k] H Iv(wP~LB)~ is then a simplicial pointed space $!) (we use v for 

nerves, and vertical bars for geometric realization). The loop space of the geometric 

realization 131 is QK6B, by definition. Since @[O] is a point and $)[l] = Iv(wg)l, we 

have an obvious inclusion of ZI v(wW) j in 191; its adjoint is an inclusion 

jv(wg)l GQIJW. S ee also [41, bottom of p. 3291. 

It is straightforward to make the spaces / v(xw.&V,) 1, for k> 0, into a simplicial 

space also, such that the following holds: 

(i) The forgetful maps A : lv(xwYk7k)1 + lv(w,V;,~3)/, of 4.2 define a simplicial 

map between simplicial spaces as k varies. 

(ii) The canonical involutions / v(xwVkC27) 1~ ) v(xw.9”9)/, obtained by inter- 

changing the participants in all nondegenerate pairings, define an antisimplicial map 

between simplicial spaces as k varies. 

Here the word antisimplicial means the following. The category d has an automor- 

phism a sending a monotone map f: [j] + [k] to a(f) = rk fy/, where Yj and rk are 

the order-reversing bijections on [j] and [k]. An antisimplicial map between 

simplicial objects X, Y in some category is a simplicial map from X to Y. (Y. An 

antisimplicial map between simplicial sets or simplicial spaces induces an honest 

map between their geometric realizations. For example, a contravariant functor 

from one category to another induces an antisimplicial map between the nerves. (In- 

deed, for fixed k the involution on 1 v(xw&g)) mentioned just above is induced by 

a contravariant functor; but that is another story.) 

Summarizing, we can replace the categories w&g by XWY~Y;, in Waldhausen’s 

definition of Q&6@. This will result in a new model for Q&g, which we call the X- 

model because of the ubiquitous prefix x. It has the correct homotopy type by 4.2, 

but it also carries a Z,-action. To be precise, we write QgG? : = Q 1x1, where X is the 

simplicial space [k] ,+ ~v(xw.V,CS)I. We have seen that the canonical contravariant 
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involutions on xwy?,g for kz 0 define an involution T on the geometric realization 

1x1. We then obtain an involution on Q2)X( = Q&a by 1 H rh-, where 1: S’+ IX) is 

a pointed loop in /X( and r : S I +S’ is the group-theoretic inverse. 

Using the x-model of Q&a, we have an evident inclusion 1 v(xwg) 14 QgG$ which 

is compatible with Z,-actions. (Remember that the involution on the delooping 1x1 

of Q&S was defined by means of an antisimplicial map, and see again [41, bottom 

of p. 3291.) 

Segal’s machine shows once more that the involution we constructed on Qg&% is 

an infinite loop space involution, which is why we may regard it as an involution 

on the spectrum gg. See also 4.5 below. 

We apologize for using the word space in a very liberal way. For example, it is 

not clear in what sense the geometric realization of a simplicial class is a space. It 

seems to be wise, then, to replace a by a full subcategory with cofibrations and 

weak equivalences 8’~ 621 such that the inclusion g’c, g satisfies the hypotheses of 

the approximation theorem 1.6.7 in [41], and such that $8’ is small. Then QKa’ ex- 

ists and has the correct homotopy type. We leave the choice of 9 to the reader. 

We shall also continue to write Q&&8 etc. when we should write Q&g’ etc. 

4.3. Observation. A formally O-dimensional symmetric algebraic PoincarP complex 
(C, p) gives rise to a Z,-equivariant map EZ, -+ Q&g. 

Comment and proof. We use the x-model of Qga to make sense of the statement. 

Let us also agree that C can be any chain complex in g’, with possibly nontrivial 

homology in negative dimensions. The symbol p denotes a chain map W+ 
C’ OR C of chain complexes over z[Z,], where W is the usual free resolution of the 

trivial module z over z[Z,]. (See Section 0 and 3.11.) It is supposed to be non- 

degenerate. 

If we use the standard (simplicial) model for EZ,, which is the nerve of a 

category with two objects which are both initial, then W can be identified with the 

cellular chain complex cl(EZ,). Therefore any j-simplex in EZ, gives rise to a chain 

map 
cl(n j) --t cl(EZ,) = W 

which we may compose with v, to obtain a chain map 

c1(4+,j. Z-PC’& c. 

But this is aj-simplex in the simplicial set or class Ob(xwB). Summarizing, we have 

constructed a Z,-equivariant simplicial map from EZ, to Ob(xwg). Since there are 

.&-equivariant inclusions IOb(xw%‘)I 4 / v(xw@) 14 Qgg, the proof is complete. 

So much for the involution on Kg; using the full strength of 3.10, we can define 

similar involutions on &,,g for all n?O. Again we refer to the x-model of &~,g 

or of Q&,g. 
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4.4. Observation. Any n-simplex in Q&p’(R) gives rise to a Z,-equivariant map 

EZ,+Q&,,~. 

Proof. Recall from Section 0 that an n-simplex in Q&p’T(R) is a natural chain 

map of the form 

0: W@cl-*C’@, c 

which is Z,-equivariant and nondegenerate, with C in e,g. The symbol cl denotes 

the usual functor on po[n]. With cp we associate a Z2-equivariant simplicial map 

EZ,-r Ob(xwe$) 

as before. In short, the construction is a straightforward generalization of that in 

4.3. 0 

As explained in Section 0, we obtain from 4.4 a map from Q&p’(R) to 

lQff’G;&.~)l. 

4.5. Observation. This is an infinite loop map between infinite loop spaces. 

Proof. For qz0 let X4 be the geometric realization of the simplicial set whose n- 
simplices are the n-simplices (C,p) of Q&p’(R), with C in e,g, together with a 

splitting of C into q direct summands, and a compatible decomposition of ~7: 

W@cl+C’@, C as 9=v)l+v)2+ ... +p,. The collection X= {X4 ) 420) is then a 

r-space in the sense of Segal [30]. 

In the same spirit, let engiy be the category (with cofibrations and weak 

equivalences) whose objects are the objects of @,%!I together with a splitting into q 
direct summands. Using nondegenerate pairings etc., construct an involution on 
&,,g,, for each n and q and write Yy = lQH’(Z,;&. a,)/. The collection Y= 

{ Yq 1 q 2 0) is also a r-space. The map X, + Y, in 4.5 extends to a map of r-spaces 

in the obvious way. (We will not use the categories $921, again, except for q = 1, in 

which case we write 9 as before.) 0 

4.6. Proposition. The simplicial Z,-spectrum I&. 9 is an augmented Z2-resolution. _ 

Proof. Fix n>O. We first investigate the homotopy type of @,9~, without any 

involution. (It is therefore convenient to use the original Waldhausen model of 

j&,9, without the prefix x.) Let @,9ce,93 be the full subcategory consisting 

of the well-behaved objects; it is a subcategory with cofibrations and weak 

equivalences. By 3.2 and 3.3 the inclusion w&~?c WQ,~ induces a homotopy 

equivalence of nerves, where the prefix w denotes weak equivalences. Similarly, the 

inclusions wP,g,a C wYk ~~97 induce homotopy equivalences of nerves. Conse- 

quently, inclusion defines a homotopy equivalence gGng % @, 9. 
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Next, let s be any face of dn. Let f,: Q,g--+g be the functor sending an object 

C in @,9 to C(s/k), the quotient of the cofibration C(k) --f C(s). This is an exact 

functor, so it induces a map &%i -tK68 which we also write f,. 

In the opposite direction, define a functor e,: g--+&g by letting 

(e,BM) = 
B if qzs, 

0 otherwise 

for any B in 9 and any q E po[n]. (For ssqsq’, the structure maps (e,B)(q)+ 
(e,B)(q’) are to be identity maps B+ B.) Again, each e, is an exact functor and in- 

duces a map I$$Z -Q,$ZJ which we also write e,. 

Now let 

e=Ve,:V&s+&9, 
s s 

f=n.&:gQ”-np=Vg~ 
5 s 5 

where in both cases s ranges over all faces of d”. It is clear from the definitions 

that 

f.e=id:VK$Z-+-)gKW. 
s s 

But it also follows from the additivity theorem in [41] that 

Namely, choose a filtration of dn by CW-subspaces 

0=&CX,CX,C ... CX2”11_, =d” 

such that the X, are all distinct (which means that Xi -Xi_, must consist of exactly 

one cell if O<i12”+’ - 1). Such a filtration of d” induces a natural filtration on 

objects C of &,5X?, given by 

Filt,C(s)=C(snX,) for 0<2’52”+‘-1 

where s is any face of d”. (Remember that C is well behaved.) By version (4) of the 

additivity theorem 1.3.2 in [41], the exact functor 

C- @ (Filt; C/Filt,_ 1 C) 

from Q,g to itself, where O<i12”+’ - 1, induces a self-map of gGna which is 

homotopic to the identity. On the other hand, this map is clearly also homotopic 

to e. f above, and we conclude that e. f = id. Therefore 

(In Section 0 we specified a different map, say g, from Q,,$Z to V&a; but it is 

clear that the composition 

VK~A$?,~~@,LD 5 VP 
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is a homotopy equivalence, and therefore g also is a homotopy equivalence.) 

Next, observe that ,Q. 9l is an incomplete simplicial category. That is, the face 

operators d; : Q,C@ + Q, ~ I ~3 restrict to face operators dj : &3,91+ & _ , g, but there 

are no reasonable degeneracy operators &GB-+Q,,+ i9 (this is why we normally 

prefer to work with Q. a). If we regard the splitting f: @,,$Z = V&G@ above as a 

splitting of the contravariant functor 

on the homotopy category of spectra, then each face operator dj becomes a pro- 

jection 

@_ I-,KW + 0 I-,ga 
4EPdfi- II 

which annihilates those summands whose label s E po[n] contains in [n]. Conse- 

quently, in the splitting 

the nondegenerate summand Nl&,,g corresponds to the wedge summands labelled 

by s=n” and s=d,d”. (See 1.5 and its sequel.) Further, the face map 

maps the second wedge summand KG27 C N&,53 identically to the first wedge sum- 

mand &2J C NIQ,, _ 1 93, and maps the first wedge summand QB cN~Q,,~ trivially. 

Therefore &. 9l is acyclic. 

In order to understand the involution on &,,S, or on @,,g, we now introduce, 

for any s~po[n], another exact functor cS: g-Q,,&B. Let s’cd” be the union of 

all faces not containing the face s, and for any object C in 27 define cS,C by 

for q E po[n]. (As usual, cl(q/q il s’) is the quotient of the cofibration cl(q fl s’) --t 

cl(q); both q and qns’ are regarded as subspaces of A”.) The structure maps 

(FsC)(q) +(PsC)(q’) for qsq’ are given by inclusion. 

We also write cS: &8 -gGng for the map of spectra induced by c5. It is useful 

because the square 

(*) 

es 
KW - K&,5@ = E 

involution involution 

commutes up to homotopy. This can be seen as follows. Let q : Z + B’ OR C be a 

nondegenerate pairing between objects of %I. Associate with ul a nondegenerate 
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pairing qs between the objects e,B and .?$,C in $,,a by observing that 

(G)(q)’ OR(~~cC)(q)~:Cl(q/qns')O(B'OR c> 

for any qEpo[n], and that cl(q)~cl(q)@Z maps to cl(q/qnsL)@(B’@K C) by 

(projection@q). Notice that r is an object of degree 0 in XV+@, and $ is an object 

of degree 0 in XM@,~. We can proceed similarly with objects of degree jr0 in 

xi&B, or with objects of degreejr0 in xwY,GB, for any kr0. In short, we obtain 

an explicit map from the x-model of Kg to the x-model of @,g or of g$,,g, and 

the map clearly shows that the square (*) commutes up to homotopy. 

So the involution gdn5B+&$g can be described, as a homotopy class of self- 

maps of a (2n+’ - 1)-fold wedge of copies of KGB, by a square matrix 

(&. % * Wq,s.,o~nl 

where inv : KC&? +Z$g is the usual involution. It is easy to verify that f4 Ed is isomor- 

phic, as an exact functor from kD to itself, to an iterated suspension functor .XJ for 

suitable j depending on s and q, or to the zero functor. As a map from &a to itself, 

it is therefore homotopic to plus or minus the identity, or to zero. (See [41, 

Proposition 1.6.21.) If we now restrict attention to those q and s which are equal 

to either d” or &,A”, then we obtain a 2x2 submatrix 

( 

(-)” inv (-)” inv 

0 (-)” ’ inv i 

which describes the effect of the involution &S-&g on the nondegenerate 

summand NIY@,~ = I/G@ vK91. We conclude that N@,,g is an induced 22 - 
spectrum; since this is true for any n > 0, we have verified 2.9(iii) for the simplicial 

Z,-spectrum &. g. 0 

4.7. Remark. The splitting of I&g into copies of Kg is a special case of a split- 

ting theorem for certain K-theories obtained by Luck [19]. Luck also has a more 

convincing characterization of well-behaved objects. (See p. 80/81 of tom Dieck’s 

book [37]. We nevertheless prefer our own description because it remains meaning- 

ful when spaces are substituted for chain complexes.) 

4.8. Remark. There are two slightly different descriptions of Q&‘(R). In the 

first, which we used, an n-simplex of Q@‘(R) is an object C in e,,g with some 

extra structure; in the second description, one insists that C be well behaved. The 

first description gives a simplicial set, say X, which does not have the Kan property; 

the second gives an incomplete simplicial set (i.e. one without degeneracy 

operators), say X’, which does have the Kan property. It is clear that rr,,(X’) is the 

bordism group of formally n-dimensional symmetric algebraic Poincare complexes. 

See [29] for information on incomplete simplicial sets. 

We shall show that X’ does indeed have the Kan property and that the inclusion 

X’GX is a homotopy equivalence. (For the time being we forget the degeneracy 
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operators in X and regard the inclusion X’c+X as one of incomplete simplicial sets. 

Incomplete simplicial sets have their own geometric realizations; moreover it makes 

no difference to the homotopy type whether or not we take care of the degeneracy 

operators in defining the geometric realization of X, or of any other complete 

simplicial set.) The reader is warned that we are up to something tedious. 

For 0 pi 5 n let /1,, C A” be the union of all faces djn’ for j # i. A well-behaved 

object C of Q,$Z will be called i-shallow if the cofibrations 

C(d;d”)c,c(n”), C(4,i)4C(~“) 

induced by inclusion are both homotopy equivalences. An arbitrary object C in 

~~58 is i-shallow if its well-behaved approximation (of 3.2) is. The objects in @,g 

are the n-simplices of a simplicial set Y; and the well-behaved objects form an in- 

complete simplicial subset Y’C Y. There is a square of incomplete simplicial sets and 

maps 

X’ e x 

! i P P 

Y' - Y 

where the maps p are forgetful. 

Now interpret d” as an incomplete simplicial set (with one simplex for each 

s~po[n]) and interpret /l,i as an incomplete simplicial subset of d”. Let f: An,;+ 

X be a map and let g : A” --) Y be an extension of p. f: A,,, ;+ Y. Can we find 

7: A” --,X extending f and lifting g? 

Observation 1. Yes, if the n-simplex in Y determined by g is i-shallow. 

It is not hard to see that any map /l,; + Y’ has an i-shallow extension A”+ Y’; 

together with the observation this implies that X’ has the Kan property. 

Let I/ be an arbitrary incomplete simplicial set. Write [0, l] for the incomplete 

simplicial set generated by a single l-simplex (with no relations), and write V@ [0, l] 

for the geometric product of I/ and [0, 11. (See [29, Section 31 for details.) This is 

an incomplete simplicial set whose geometric realization is homeomorphic to the 

product of the geometric realizations of V’ and [0, 11. Given any map 

we shall construct an extension 

@: V@[O,l]+Y 

which maps V@ {l} to Y’c Y (and agrees with e on V@ (0)). We may assume that 

V is a standard simplex A”; the general case can then be obtained by glueing. In 

this case the map e: A”+ Y is worth as much as a simplex in Y, or a functor C 

from the category of faces of A” to g; we must try to extend it to a functor C 
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on the category of faces (= simplices) of O”@[O, 11. Let C be the well-behaved 

approximation of C constructed in 3.2. If w is a face (= simplex) of O”@ [0, 11, let 

C(w)= 
t 

C(pr,(w)) if wcn”@{l}, 

C(pr,(w)) otherwise 

where pr,(w)cd” is the image of w under the projection of geometric realizations 

)4”@[0, I] 1 --f jA”l. (The dimension of pr,(w) may be less than that of w.) The 

structure chain maps for C are obvious. This completes the construction of e^, in a 

special case and therefore in general. 

The extension $ has a remarkable property. Let xn be an n-simplex in V. The in- 

verse image of x” in 1 V@ [0, 111 under the projection map 1 V@ [0, l] I+ / I/ / contains 

n + 1 simplices of dimension n + 1, which we label zOx”, z,xn, ,.. , znxn. (Fix the 

order in such a way that the barycentre of z;x” maps to (i+ l)/(n + 2) under the 

projection to [0, 11.) We now observe that @(z,x”) is an i-shallow simplex in Y, for 

any i between 0 and n. 

Observation 2. Suppose that e : V -tYliftstoamapq: V+X,sothatp.q=e.Then 

@ also lifts to a map 4 : V@ [0, l] -+X which agrees with q on V@ { 0} . 

(Such a map q will automatically send V@ { l} to X’.) Construct 4 as follows: 4 is 

already defined on V@ (0). Use Observation 1 to extend it over the incomplete 

simplicial subset of V@ [O, I] obtained from V@ (0) by adjoining all simplices of 

the form zOxo, where x0 can be any O-simplex in V. Next, adjoin the simplices of 

the form zoxl, using Observation 1 again; next, those of the form Z, x1; then those 

of the form zox2; those of the form zlx2; and so on in anti-lexicographic order. 

The result is an extension over V@ [0, I]. 

Taking q to be the identity on X in Observation 2, and looking at the restriction 

of 4 to X@ { l}, we see that X is a homotopy retract of X’. The corresponding 

retraction on rr*(X’) is the identity; this can be checked by hand since X’ has the 

Kan property. Therefore the inclusion X’+X is a homotopy equivalence. 

(We will not use incomplete simplicial sets again in this paper.) 

4.9. Remark. Let C be an object of @,a. We define a quadratic pairing of C with 

itself to be a natural chain map 

w : cl(s) -+ ~OL[Z2] (CW’ OR C(d) 

with s E po[n]. Such a quadratic pairing gives rise to a symmetric pairing on compo- 

sing with the algebraic norm map 

therefore we can speak of nondegeneracy. (See the prelude to 2.11.) The 

nondegenerate quadratic pairings (C, w) as above, with C in ~~99, are the n- 

simplices of a simplicial set whose geometric realization we call Q&,(R). Arguing 

as in 4.8 one can see that n,(Q&,(R)) is the bordism group of formally n- 

dimensional quadratic algebraic Poincare complexes. 



90 M. Weiss, B. Williams 

The definitions of Q&p’(R) and Q&p,(R) are due to Ranicki. A sketch is given _ 
in [26]; a more detailed version appears in [18]. (The detailed version is not quite 

correct since Ranicki habitually works with homology classes of symmetric or 

quadratic pairings where we use explicit symmetric or quadratic pairings. This spoils 

the Kan condition despite claims made in [18].) The homotopy groups of Q&p’(R) 

go back to Mishchenko [21]; we should also mention Quinn [23,24] for introducing 

simplicial methods to the subject. See also Chapters 9 and 17A of Wall’s book [44]. 

Technicalities apart, our definitions differ slightly from those of Ranicki in that 

we allow chain complexes (in g) having no particular connectivity properties. This 

does not affect the groups L,(R):=n,(QP.(R)), because of the possibility of 

doing algebraic surgery below the middle dimension. But it does affect L”(R):= 

n,(Q&p’(R)). As a result the double skew suspension homomorphism s2 : L”(R)+ 

Ln+4(R) is an isomorphism for any y1 L 0 in our version (it has an obvious inverse), 

but not in Ranicki’s version. Our version can be obtained from Ranicki’s by stabiliz- 

ing with respect to the suspension. 

5. Nonlinear duality 

Having completed the linear part of our mission, we turn to nonlinear studies: 

spectra will replace chain complexes, and smash products of spectra will replace ten- 

sor products of chain complexes (as in 3.5, say). Our approach to smash products 

is that of 2.1. (In an earlier version, we made some incorrect assumptions about 

smash products; these were pointed out by Waldhausen and Vogt.) In this section 

and the next, spectrum need not mean CW-spectrum, and space need not mean 

CW-space. 

Let X be a pointed space. By a filtration of X is meant a family of pointed sub- 

spaces Filt, X, with FEZ, such that Filt, Xc Filt,,, X for all i, and X is the union 

of the Filt, X. Call the filtration hemicellular if the pair (X, Filt, X) is i-connected 

for all i, and Filtt, X= {*}. (See [34, Definition 3.121.) A filtration of a spectrum 

X by subspectra Filt, X will be called hemicellular if the induced filtrations on the 

X, are, after a suitable shift: i.e. the pair (X,, (Filt; X),) is (i+ n)-connected for all 

n and all i, and (Filtt, _n X), = { *} . Hemicellular filtrations of bispectra can be 

defined in the same way. A map f: X -+ Y between pointed spaces (or a function 

between spectra, or a function between bispectra) equipped with hemicellular filtra- 

tions is called hemicellular if it respects the filtrations. If X is CW then the usual 

cellular filtration is hemicellular; with regard to this filtration any map f from X 

to some Y with hemicellular filtration is homotopic to a hemicellular map, and the 

homotopy can be arranged to fix a pointed CW-subspace (or a CW-subspectrum, 

or a CW-sub-bispectrum) X’CX provided f is already hemicellular on X’. 

5.1. Definition. The hemicellular chain complex hcl(Y) of a pointed space (or a 

spectrum, or a bispectrum) with hemicellular filtration is given in degree k by 
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H,(Filt, Y Filt,_ 1 Y; Z) 

with the obvious differential. (Compare [9, Chapter V, Definitions 1.1, 1.21.) 

In the case of a pointed CW-space with the cellular filtration, hcl(Y) is just the 

reduced cellular chain complex; for a CW-spectrum or CW-bispectrum Y with the 

cellular filtration, hcl(Y) agrees with the cellular chain complex cl(Y). 

Let G be a topological group. We shall not assume that G has a CW-structure. 

A G-space is a topological space X together with a continuous action G xX+X. 

A tame G-CW-space is a G-space X equipped with a base point fixed under the 

G-action, and with a filtration satisfying conditions (i)-(iii) below. 

(i) Filt_, X= {*}. 

(ii) For any i 2 0, there exists a G-homeomorphism 

Filt; X = Filt;_, X+ (G x D’ x w(i)) 

(relative to Filt,_ i X), where w(i) is a set, D’ is the standard disk, and f: G x 

S’-’ x w(i) + Filt,_, X is a G-map. 

(iii) X= U Filt, X; a subset of X is closed if and only if its intersection with 

Filt, X is closed for all i L - 1. 

Then X/G has the structure of a pointed CW-space, and we will say that X is a 

finite tame G-CW-space if X/G is a finite (=compact) CW-space. (For discrete G, 

our definition of a tame G-CW-space agrees with that of Ranicki [25], except that 

Ranicki does not use the word tame.) 

A tame G-CW-space X is finitely dominated if there exists a finite tame 

G-CW-space Y and G-maps i : X4 Y, r : Y-t X such that ri is G-homotopic to the 

identity on X. 

The filtration of a tame G-CW-space X is hemicellular. The hemicellular chain 

complex hcl(X) is a chain complex of free modules over the group ring Zrc, where 

TC = Q(G). 

If X is a tame G-CW-space, then so is ZX, with (ZX)/GzZ’(X/G). A tame 

G-CW-spectrum is a family of tame G-CW-spaces {Xi 1 FEZ}, together with 

G-maps Ei :2X; -Xi+ ,; it is required that each E; be an isomorphism of 2X, with 

a tame G-CW-subspace of Xi+ 1. (For G= {l} this is still Boardman’s definition; 

for discrete G it is due to Ranicki [25].) There are notions of finite and finitely 

dominated for tame G-CW-spectra. G-maps between tame G-CW-spectra are 

defined in the expected way, as equivalence classes of G-functions (recall the defini- 

tions for G= (1)). Any tame G-CW-spectrum has a canonical hemicellular filtra- 

tion. The associated hemicellular chain complex is one of free modules over ZTC. 

Let %G be the category of finitely dominated tame G-CW-spectra and hemicellular 

G-maps. The rule 

X ++ hcl(X) 

is then a functor from ??/ to g’, where g is the category introduced in Section 0, 

with R =Zrc as ground ring. 
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5.2. Proposition. The following conditions on a morphism f :X+ Y in 4?/ are 
equivalent: 

(i) f is a G-homotopy equivalence; 
(ii) the chain map hcl(X) --f hcl(Y) induced by f is a homotopy equivalence over 

zrc; 
(iii) the graded homomorphism 

~,(WXN + H&cl(Y)) 

induced by f is an isomorphism. 

Proof. For n E Z, let n,(X) be the group of homotopy classes of maps from the 

CW-spectrum Znso to X. If I/ is any object in 4?L, write [XX] for the abelian 

group of G-homotopy classes of G-maps from V to X. Observe that 

z,(X) = [C”(G+ A so), X]. 

Saying that f: X+ Y is a G-homotopy equivalence is equivalent to saying that 

f,: n*(X) -+ n,(Y) is an isomorphism. For if the homomorphism [V,X] -+ [V, Y] 

given by composition with f is an isomorphism whenever V has the form 

Z”(G+A 3’) for some n, then it will be an isomorphism for any finite tame 

G-CW-spectrum V (use induction on the number of cells of V/G). It will also be 

an isomorphism for finitely dominated V, and in particular for I/‘= X and I/= Y. 

Assuming 5.2(ii), we shall therefore prove that 

f* : I* * n*(Y) 

is an isomorphism. The hemicellular filtration of X gives rise to a spectral sequence 

converging to n,(X). Its E2-term is, by inspection, 

E& = H,(n,(G+ A 8’) Ozn hcl(X)). 

There is a similar spectral sequence converging to n,(Y). If we assume 5.2(ii), 

then f will induce an isomorphism between the E*-terms of the respective spectral 

sequences, and therefore an isomorphism from n,(X) to -/r,(Y). The implication 

(iii) * (ii) is well known; note that our chain complexes are homotopy equivalent 

over Z?r to finitely generated ones. 0 

We now describe duality in %, first in an untwisted setting. Given two objects X 

and Y in %, form the bispectrum XA, Y such that 

WAG nn, n = x,A, Y, := (X,/Y Y,)/G, 

where G acts simultaneously on X, and Y,,. Equip XA, Y with a suitable ‘product 

filtration’, using the intrinsic hemicellular filtrations of X and Y. This will again be 

hemicellular. One finds that 

hcl(XA, Y) = hcl(X)’ @En hcl(Y), 
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where we use the untwisted involution on 777~ (given by g H gP1 for g E n) to make 

sense of the superscript t. 

5.3. Definition (untwisted version). A pairing of X and Y is a hemicellular map 

r/:SO-,X/\, Y 

from the pointed CW-space So to the bispectrum XA, Y. (See the end of 2.1.) 

Such a map q will induce a chain map 

Z -+ hcl(Xr\, Y) = hcl(X)‘& hcl(Y), 

since the reduced cellular chain complex of So is z. This is a pairing between the 

objects hcl(X) and hcl(Y) in g; if it is nondegenerate, call q nondegenerate. 

The twisted setting is as follows. The twist itself comes in the shape of a well- 

pointed G-space J together with an element in zq(J), for some qz0, represented 

by a weak homotopy equivalence Sq + J. (“Well-pointed” means that the inclusion 

(*} 4 J has the homotopy extension property; it is understood that G fixes the base 

point.) Since z= no(G) acts on H,(J, {*};z)=Z, we obtain a homomorphism 

w : n + Z2 z Aut(Z). 

Given two objects X and Y in 021, form the bispectrum XA,,, Y such that 

(X'b,, %,n = (x, A JA Y,)/G 

where G acts on the three factors simultaneously. Now X and Y have intrinsic hemi- 

cellular filtrations, and J has a hemicellular filtration given by 

J 
Filti J = 

if iz-q, 

{*} if i<q. 

So there is a product filtration on XA,,, Y. Using the well-pointedness of J one 

finds that it is hemicellular, and 

hcl(XAG,J Y) = P(hcl(X)‘& hcl(Y)). 

This time we use the w-twisted involution on &, given by g - w(g). g-’ for g E n. 

5.4. Definition (twisted version). A pairing between X and Y is a hemicellular map 

v:Sq-XA,, Y 

from the pointed CW-space Sq to the bispectrum XA,, Y. 

Again, such a pairing induces a chain map 

zqz -+zq(hcl(X)’ Ban hcl(Y)) 
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which is in effect a pairing between hcl(X) and hcl(Y). If it is nondegenerate, call 

q nondegenerate. 

Taking J=S” shows that 5.4 includes 5.3. See Section 6 for other choices of J. 

Fix G and J for the rest of this section, and fix a positive integer n as in Section 

3. Let Q, 02d be the category of covariant functors from po [n] to uz1. Since % is 

a category with cofibrations and weak equivalences, so is Q, a. (A morphism 

f: X+ Y in ozd is a cofibration if it is a G-CW-isomorphism of X with a subobject 

of Y. It is a weak equivalence if it is a G-homotopy equivalence. A morphism 

f: X+ Y in Q, % is a cofibration if each f(s) : X(s) + Y(s) is a cofibration, for 

s E po[n]; it is a weak equivalence if each f(s) is a weak equivalence.) 

A pairing between objects X and Y in Q, % is a natural map 

rl : C4(s+) + X(s) AC, J Y(s) 

where s ranges over the faces of dn. (See the end of Definition 2.1; remember also 

that q occured in the description of J.) This will be considered nondegenerate if the 

induced pairing of objects hcl(X), hcl(Y) in Q,&Z is nondegenerate. We want to 

show, in analogy with 3.6, that any object X in Q,% occurs in a nondegenerate 

pairing, and that such a nondegenerate pairing is essentially unique (in analogy with 

3.10). It seems best to reformulate the results of Section 3 in the nonlinear setting, 

one by one. 

The nonlinear version of 3.1 is as follows. Let X and Y be objects in ~~021; 

assume that X is well behaved. (The definition of “well behaved” is literally the 

same as in the linear setting.) Let [X, Y], be the group of homotopy classes of 

G-maps from ,ZkX to Y. If Y’ is another object in Q, Q, then the homomorphisms 

tx, ylk -+ ix, y’lk 

induced by f are isomorphisms. 

The proof can be modelled on that of 3.1. (It is possible to define a mapping spec- 

trum map,(X, Y) whose homotopy groups are the groups [X, Y]k; it has a natural m 
filtration, and the proof consists in inspecting the homotopy groups of the filtration 

quotients.) There is also an exactness statement, corresponding to the second part 

of 3.1, whose formulation we leave to the reader. 

There are obvious nonlinear versions of 3.2 and 3.3. The nonlinear version of 3.4 

is simply false; even if n = 0 there are objects in Q, % = & which are not G-homo- 

topy equivalent to finite ones. (There is a finiteness obstruction in J?o(Z7c).) Note 

that 3.4 was used only in proving 3.6. The nonlinear version of 3.5 has already been 

stated, as 5.4. We postpone the nonlinear version of 3.6 and turn to that of 3.7. 

Suppose then that rl is a nondegenerate pairing of objects X and Y in Q,,%; 

assume that Y is well behaved. Denote by z~~(XA~,~ Y) the group of homotopy 

classes of natural maps 

zk(s+) -+ x(s) &, J y(s) 
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with s E po [n] . There are homomorphisms 

\ I? : [r, Y’l, + “k”a:JXAG,J Y’) 

for any Y’ in Q, a, given by sending f: .Xk Yd Y’ to the composition 

9’k(...+) A XA,,,.6Y 
idr\f 

- XA,,, Y’ 

(where . . . stands for the identity functor s ++ s on po [n]). These homomorphisms are 

isomorphisms, for arbitrary Y’. 

Proof: The statement remains true when Y’ is any functor from po [n] to the cate- 

gory of tame G-CW-spectra (no finiteness conditions), and in this form it is easier 

to prove. 

Step 1. Fix TE po[n], and let Y’ be such that the maps Y’(s) -+ Y’(r) are iso- 

morphisms if .s< r, and Y’(s) = {*} if s is not contained in 7. Suppose also that 

nj(Y’(r)) = 0 if j#O: write no(Y’(r)) = A. In this case 

[r, Y’], = Hpk(hcl(Y(r)); &) 

and 

4a:,(X&, J Y’) = H,(hcl(X),,; A!), 

which can be seen as follows. We may assume that Y’(r)/G has no cells in negative 

dimensions, so that there is an ‘augmentation’ 

hcl(Y’(r)) + A = H,(hcl(Y’(r))) = rrO(Y’(r)). 

Using this augmentation, define homomorphisms 

[r, Y’]k --f Hpk(hcl(Y(r)); A) 
and 

4$(X%, Y’) + &(hCl(X);,; &) 

for arbitrary k, which are natural in Y and X. These homomorphisms are iso- 

morphisms, by inspection. 

So, with our very special assumptions on Y’, the homomorphisms 

\q : [r, y’l, + n;a:,(XA,,, y’> 

can be identified with 

\q’ : Kk(hcl(Y)(r); A) 4 &(hCl(X),,; “4%). 

They are isomorphisms by 3.13, since q is nondegenerate. 

Step 2. Fix TE po[n], and let Y’ be such that the maps Y’(s) + Y’(r) are isomor- 

phisms for .ss r, and Y’(s) = {*} ifs is not contained in r. Now Y’(r) has a Postnikov 

filtration. In other words, it is possible to construct tame G-CW-spectra p’Y’(r), 

for i E Z, and G-maps 

q’ Y’(r) 4 Y’(r) 
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inducing isomorphisms on homotopy groups in dimensions zi, whereas zj (p’Y’(r)) = 

0 for j < i. (This is straightforward; define first p’Y’(r) by killing homotopy groups 

in dimensions zi. Do so by attaching copies of G, ADisk,. Compare 1.2.) Letting 

i tend to -co, one obtains the Postnikov filtration of Y’(r). Because of our assump- 

tions on Y’, we can regard it as a filtration of Y’ itself. As such it gives rise to two 

spectral sequences converging, respectively, to [Y, Y’], and to rriy*(X~o,~ Y’). 

Slant product with q defines a morphism of spectral sequences. It is an isomorphism 

on E*-terms, by Step 1; so it is an isomorphism on Em-terms. 

Step 3. Given an arbitrary Y’, construct a weakly equivalent object with a finite 

filtration whose filtration quotients satisfy the restrictions imposed in Step 2 (for 

some r, which may vary). Then apply the five lemma (several times). 

Next, there is 3.8. Here the proof of the nonlinear version is obvious, because 

nondegeneracy of a pairing in Q, ozd simply means nondegeneracy of the induced 

pairing in e,,g. But the formulation, as opposed to the proof, requires care. 

Assume n = 0 to simplify notation. For any bispectrum U, let Uflip be the bispec- 

trum such that (U’““) m,n = U,,, etc., so that 

u_ utlip 

is a functor from bispectra to bispectra. Let 

r/:S4+XAoJY 

be a pairing in eo%Iz Ou. Remember that this is shorthand notation for a map of 

bispectra 

r:Sq~So~So,(X~\J/\Y)/G. 

The composite map of bispectra 

S%QOr\SO (YA Jr\X)/G 

I 

& 

I 

t 

flip 
(SqA SOr\ SO)f”P L (XA Jr\ Y)fliP/G 

where the vertical arrows are given in bidegree (j,k) by 

S~ASJASk YjAJAXk 

I- 

= and 

I- 

= 

SqASkASj x,AJAy, 

defines another pairing. This is the switched pairing we want. 

The nonlinear version of 3.9 is again obvious. But we still have to show that any 

X in Q,, oi%, with arbitrary n, occurs in a nondegenerate pairing. (This corresponds 

to 3.6.) Here are two useful observations. 
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(i) If f: X-+X’ is a morphism in Q, +2, and if both X and X’ occur in a non- 

degenerate pairing (say, q and q’), then so does the mapping cone off. 

(ii) If X and Y are objects in Q, 42 such that XV Y occurs in a nondegenerate 

pairing, then so does X. 

Proof of (i): We can assume that f :X+X’ is a cofibration. Choose duals Y’ and 

Y for X’ and X, respectively, so that X and Y occur in a nondegenerate pairing II, 

and X’, Y’ occur in a nondegenerate pairing q’. Choose a map g: Y’+ Y dual to f 

in the sense of 3.9 (nonlinear version). This means that g\ q’ and f \ q represent the 

same class in ~cJ?~(X’A~,~ Y). Assume also that g is a cofibration and choose a 

specific homotopy from g\q’ to f \I?. Passing to cofibres Y/Y’ and X//X, one 

finds that the homotopy projects to a nondegenerate pairing between X’/X and 

_+(Y/Y’). 

Proof of (ii): Let q be a nondegenerate pairing of XV Y with some U. Let 

r : Xv Y+ X be the projection and let i : X+ XV Y be the inclusion. Let p : U+ (I 
be dual to ir : XV Y + XV Y, in the sense of 3.9 (nonlinear version). Then p. p =p 

because ir. ir= ir. Define U’ to be the homotopy direct limit (in this case a telescope) 

of the diagram 

UP- lJL up. I/-*... 

Then U’ belongs to Q, uzd (it is dominated by U). Write e: U-, U’ for the inclusion 

(which is really a projection from a homotopy-theoretic point of view). Go from 

(xvy)AG,J u to XAG.J U’ by r Ae. So the nondegenerate pairing q of XV Y with 

U induces another pairing (me) . q of X with U’, which is also nondegenerate. 

Now let X be an object in Q, ~?JJ. The question is whether X occurs in a non- 

degenerate pairing. We may assume that X is well behaved. By (ii) above, we may 

also assume that X(d”) is finite, not just finitely dominated. (If this is not yet the 

case, we can dominate X by a well-behaved object k’with this property; the domina- 

tion means that V’=Xv Y for suitable Y.) Using (i) and downward induction on the 

number of cells in the CW-spectrum X(d”)/G, reduce to the case where this num- 

ber is one. In this case there exists an r E po[n] such that 

X(r) z G+AJ?_S’ for some keZ, 

X(s) = {*} if r7Zs 

and such that the map X(r) +X(s) is an isomorphism for all s containing r. (This 

is so because X is well behaved.) Define Y in Q, % by 

Y(r) = G+A(r/dr)A~pkSo, 

Y(s) = {*} for all sfr. 

It is not hard to find a nondegenerate pairing q of X with Y. (It is sufficient to 

specify 

Ilk) :x4@+) --$ X(r)AG, J Y(r); 
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there is a canonical choice once a pointed map Sq -+ J in the distinguished homo- 

topy class has been chosen.) 

Finally, the uniqueness result 3.10 depends only on 3.6 and 3.7; since we have the 

nonlinear versions of 3.6 and 3.7, we have that of 3.10. The nonlinear formulation 

of 3.12 is obvious. There is some temptation in 3.11, too, but we must resist it until 

we get to Part III. 

6. The n-n-theorem 

Rewriting Section 4 in the nonlinear setting requires practically no further ideas, 

apart from the following definition: A skew-involution on a bispectrum U is a func- 

tion f: U+ Ufflip (or a map f: U- Uflip, if applicable) such that 

ffb .f: u+ (ufb)fb = u 

is the identity. Recall that Uflip . 

and that U - Uf”” is a functor. 

is the bispectrum such that (Uf’lp)m,n= U,,,n etc., 

Fix G and J from the previous section. A symmetric pairing in e, % is a natural 

map of the form 

p:D(... +)A(EZ2)+jXAo,./X 

which is Z,-equivariant . 

Explanation: X is an object in e, 02G. The dots . . . denote the identity functor 

s ++ s on po [n]. The map ~7 is a natural transformation between functors on po[n]. 

It is understood to be hemicellular. Recall that we use shorthand notation as in 2.1; 

so p is really a natural map of bispectra 

24( . . . +)/\(EZ,)+/\SOASO-tXA,,X. 

The source of p has a skew-involution which interchanges the two copies of _S” and 

maps each point in EZ, to its antipode. The target of p also has a skew-involution 

which interchanges the two copies of X. So 9 can be required, and is required, to 

commute with the skew-involutions. (End of explanation.) 

If the standard model of EZ, is used, then the cellular chain complex of EZ, is 

W (from the proof of 4.3 and 4.4). So a symmetric pairing (D in e, 01% as above 

gives rise to a symmetric pairing in e,g, by means of the functor X- hcl(X). If 

the latter is nondegenerate, then p itself will be considered nondegenerate. 

Let Q&‘% be the geometric realization of the simplicial set whose n-simplices are 

the nondegenerate symmetric pairings in e, Ozc. (We usually write these in the form 

(X, v)), where X is in e, %Y and p is a nondegenerate symmetric pairing of X with 

itself.) Arguing exactly as in Section 4, construct a map 

where K%Y is the K-theory spectrum of %d, in the sense of Waldhausen. This will 
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be an infinite loop map between infinite loop spaces; it could also be written as a 

map between spectra, 

Here 4’ % is the (- 1)-connected spectrum associated with the infinite loop space 

Q&’ %. Note in passing that the homotopy group rcn(&’ a) G rr,(Q&’ %) is the bor- 

dism group of formally n-dimensional symmetric Poincare objects in %?.!. (Argue as 

in 4.8.) It is reasonable to call L’oz1 the symmetric L-theory spectrum of %. 

Symmetric L-theory is often more useful than interesting in itself, and so we 

should try to get to quadratic L-theory as quickly as possible. This brings us back 

to norm maps, because the symmetrization map from quadratic to symmetric L- 

theory involves norm technology. (See 4.9.) 

6.1. Notation. Let Vbe a bispectrum with a hemicellular filtration and with a skew- 

involution zv. Let U be a CW-bispectrum with a cellular skew-involution zU. Form 

a mapping spectrum 

map(U V) 

using the same ideas as in 2.2. So the ith term of map(U, V) is the geometric realiza- 

tion of the simplicial set whose k-simplices are hemicellular maps of the form 

f:A:r\U-S’AV, 

for ir0. (For i<O it can be taken to be a point.) The group .Zz acts on map(U, V) 

by 

f -zV .f. zu; 
we let 

be the subspectrum consisting of those f which are fixed under the action, and we let 

map(& V) B 

z2 

be the quotient. If U is merely a pointed CW-space with a cellular involution, then 

we write 

map(U, V):=map(UA_SOAS, V), =_ 

mapz,(U, V):=mapz,(UAS”ASo, V), B 

map(U, V) ~ map(UASOASO, V) 
._ __ .- 

z2 z2 

(Smash the involution on U with the skew-involution on _S”A_So which inter- 

changes the factors; this results in a skew-involution on UA So A so.) In particular, 

taking U=(EZ,)+ , with the obvious involution, or taking U=S’, we get 
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and 
ff’(Z2; ~):=map&%)+, V> 

mapGo, (EZ,), A V) 
H,(Z,; V):= W 

z2 

(Smash the involution on (EZz)+ with the skew-involution on I/ to obtain a skew- 

involution on (EZ,), A V.) There is a norm map 

dv: H.(Z,; V)+H’(Z,; V), 

natural in V, see especially the last sentence of the proof of 2.4. 

It is now possible, and necessary, to give another (more general) definition of 

symmetric pairings and of Q&‘&. A symmetric pairing in e, % is a natural 

(cellular) map 

where X is an object in e,, % and s ranges over po[n]. Such a q induces a symmetric 

pairing in ,0,99, of hcl(X) with itself. (See the prelude to 2.11.) Call v, 

nondegenerate if the induced symmetric pairing in eng is nondegenerate. The 

nondegenerate symmetric pairings in e,G?/ are the n-simplices of a simplicial set 

whose geometric realization we call Qh’ozd. Careful inspection shows that the 

earlier version of Q&‘%Y is contained in the new version. Both versions have the 

same homotopy groups (argue as in 4.8). So the inclusion is a homotopy 

equivalence, though not a homeomorphism. 

The chief merit of the small version of QL’+Y is that it maps directly to 

QA’(Z,; &%), which the large version apparently does not. (See 4.3 and 4.4.) The 

chief merit of the large version is that it receives a map from another infinite loop 

space Q&. W whose definition is as follows. A natural map of the form 

where X belongs to e, 021 and s runs through po[n], will be called a quadratic pair- 

ing in e, %. It gives rise to a symmetric pairing on composing with the norm maps 

If the induced symmetric pairing is nondegenerate, then the quadratic pairing I,V 

itself will be considered nondegenerate. The nondegenerate quadratic pairings in 

e, %!L are the n-simplices of a simplicial set whose geometric realization we call 

Q&, a. By construction, Q&, ozd comes equipped with a ‘symmetrization’ map to 

Q&’ %?L. This is again an infinite loop map between infinite loop spaces. Replacing 

infinite loop maps by maps of spectra throughout, we can summarize the con- 

structions so far in a diagram: 
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&‘a + m-G gel 

zz 

symmetrization 
I 

L.@ ’ L’@ 

linearization linearization linearization 

1 1 1 
4.g 

symmetrlzation L,8 
> ’ ~‘cG;p) 

The vertical arrow &‘“21*&‘%! just indicates that we used two different de- 

finitions of 4’ uzd. The linearization maps are obtained by sending an object X in 

Q,%! to hcl(X) in ~~97. We have written &,5@,, &‘&B, &9 to mean &,(&r), 

I_p’(Zn), and gp(&r). Note that &, a, L.97, &‘g and &‘a are (- I)-connected by 

definition. Deleting the symmetric L-theory from the diagram gives a square 

L, a! - Ayz,; KS-v) 

! linearization 

I 

linearization 

L.24 - A’(Z,;g@) 

which is commutative up to a preferred homotopy. If G is the loop group of some 

pointed connected CW-space Y, then KuZl is the A-theory of Y, in symbols 

&G=Ap(Y). More details on K% are given below. We now unleash a version of 

the rr-n-theorem to complete and explain construction E. 

6.2. Proposition. The linearization map in quadratic L-theory, from 4, % to &&So, 
is a homotopy equivalence. 

It appears to be impossible to give a proof which is both clean and illuminating. 

We have opted for a clean proof, but below in 6.4(i) we sketch an illuminating one. 

The key ingredient (in the clean proof) is a lemma for which we need some ter- 

minology. An object D in $8 is called (k - 1)-connected if H, (0) = 0 for m < k, and 

it is called k-dimensional if Hm(D; R) = 0 for m > k. (Take R = Zlr.) We will write 

& for the linearization functor from @to 97 (instead of hcl, which can be confusing). 

6.3. Lemma. Let X be an object in &, and let 

g: f(X)-+D 

be a morphism in 91 such that D is (k- I)-connected and the mapping cone of g is 
(k+ I)-dimensional, for some integer k. Then g can be lifted to uz1. In other words, 
there exists an object D’ in a, a morphism g’ : X-* D’ in 42, and a homotopy 
equivalence u : f(D’)+D such that g= u. &(g’). (We defer the proof.) 
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6.4. Lemma. Let P be a (k - 1)-connected object in 021. Then PA, ,P is 
(2k - 1 + q)-connected, and so is H,(Z,, P A,, J P). The homomorphism 

n,(P)-‘H,(&(P)) 

is an isomorphism for m 5 k and a surjection for m = k t 1. The homomorphisms 

n,+q(PA~,~P)+Hm(&(P)‘O~ f(P)) 
and 

71m+JH.V2vP~ G,JP))~H,(WO,,,,,(~(P)~OR f(p))) 

(compare 5.3, 5.4 and 2.11) are isomorphisms for m 5 2k and surjections for m = 
2k-t 1. 

Proof. The cellular filtration of P/G pulls back to a filtration of P. Similarly, the 

cellular filtration of (P/G)/\ (P/G) pulls back to a filtration of PA,,,P, and 

the cellular filtration of H,(Z,, (P/G)A(P/G)) pulls back to a filtration of 

H,(Z,, PA,,P). These filtrations give rise to three spectral sequences converging 

to the homotopy of the objects in question. (We used the first to prove 5.2.) Inspec- 

tion of these spectral sequences establishes 6.4. 0 

We now prove 6.2 (using 6.3). For n 20, the homotopy groups n,(&, ozd) and 

rr,(&,g) are the bordism groups of formally n-dimensional quadratic Poincare ob- 

jects in % and in 9, respectively. (Argue as in 4.8.) We have to prove that the 

linearization homomorphism 

is surjective and injective, for any n 2 0. 
For the surjectivity part, represent an element in rr,(&,9J) by a formally n- 

dimensional quadratic Poincare object (D, I,V) in 98. Because of Ranicki’s algebraic 

surgery (especially below the middle dimension), we may assume that D is (k- l)- 

connected, where n = 2k or n = 2k + 1. By Poincart duality, D will also be (k + l)- 
dimensional if n is odd, and k-dimensional if n is even. In any case, taking X= { *> 

in 6.3 shows that D can be lifted to a. That is, there exists D’ in %I and a homotopy 

equivalence u : f(D’) -tD. By 6.4, the quadratic structure I+Y on D, or at least its class 

[WI EK(WOZ,~~,(D~ @R 0)) 

can be lifted to a class 

Then (D’, v/‘) is a quadratic Poincare object of formal dimension n in 011 whose class 

in ;rr,(&, @X21) maps to the class of (D, w) in 71,(&g). This proves surjectivity. 

The proof of injectivity is similar but, of course, more relative. Start with a for- 

mally n-dimensional quadratic Poincare object (X, 0) in %, and assume that its class 

in n,,(&, %) maps to zero in rr,(&,g). Then there exists a quadratic Poincare pair 
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of formal dimension n + 1 in ‘9, of the form 

(E(X) 5 D, (w, E(Q)). 

Here I,Y is an (n + 1)-chain in 

whose boundary agrees with the image of&(@ under g. (Certain nondegeneracy pro- 

perties of w and 0 are understood.) Because of Ranicki’s algebraic surgery again, 

we may assume that D is (k- I)-connected, where n + 1 = 2k or n + 1 = 2k + 1. By 

Poincare duality, the mapping cone of g will be (k+ 1)-dimensional. By 6.3, the map 

g can be lifted to 4?~. So we can find g’: X-tD’ and a homotopy equivalence 

u : E(D) -*D such that U. f(g’) = g. As in the first half of the proof, we can now use 

6.4 to produce a lift w’ of v/, with a suitable interpretation of the word lift. Then 

( ’ 
Xg’ D', (I&, 8) 

> 
is a quadratic Poincare pair of formal dimension n + 1 in 021. This shows that (X, 0) 

is already nullbordant in % and completes the proof of injectivity. 

It remains to prove 6.3. We begin with the observation that it is sufficient to pro- 

duce D’, g’ and u such that g is homotopic to u. f(g’). Namely, let h : u. f(g’)-g 

be a chain homotopy. We may assume that g’ is a cofibration. Then so is f(g’). 

Cofibrations have the homotopy extension property, so that h can be extended to 

a homotopy from u to something else, say u,. Replacing u by ul, we get strict 

equality: 0, . &(g’) = g. 

Next, we prove 6.3 under the additional assumption that X is (k- I)-connected, 

like D. We may work with the homotopy categories 4% and &ZJ. These are 

triangulated categories (see [2,13,38]). Embed g in a distinguished triangle 

E&(X)LD-ZE 

in hg. If f can be lifted to 02d, then g can be lifted to %. So we search for a lift 

off. That is, we search for f’:E’+X in 4?/ and z:f(E’)IE in h5@ such that 

z. &(f’) =f in h$Z. Now E is (k-2)-connected and k-dimensional. Therefore it is 

isomorphic in hg to a chain complex concentrated in dimensions k - 1 and k whose 

chain modules are free (perhaps not f.g.). The existence of E’ and z is then obvious. 

Further, f’ is also easy to construct since X is (k- I)-connected and rlk(X) = 

ffdf(X)). 
The general case is by induction on m, where m is the least positive integer such 

that X is (k - m - I)-connected. We have treated the case m = 0. If m > 0, choose a 

G-map e from a wedge of copies of G, AZ~-~S’ to X which is surjective on 

z~_~. Let X’ be the mapping cone of e. The composition ge &(e) is nullhomo- 

topic, since its target is (k- l)-connected and its source is (k - m)-dimensional. 

Therefore g has an extension 

g’ : &(X&) + D. 



104 M. Weiss, B. Williams 

(We can identify E(X&) with the mapping cone of E(e).) So we may concentrate on 

lifting g’ to %. The mapping cone of g’ is still (k + 1)-dimensional, and X’ is 

(k - m)-connected. That is, we have achieved the reduction from m to m - 1. The 

proof is complete. 

6.5. Remark. Here is an explanation of 6.2. Ranicki shows in [25] that any formally 

n-dimensional quadratic Poincare object in g is bordant to a (k - 1)-connected one, 

where n = 2k or n = 2k + 1. Quite simply, his arguments also work in %. (The 

description of Ranicki’s theory of algebraic surgery given in [46, Chapter 41 is more 

categorical than the original, so the reader might find that easier to generalize.) 

Working with highly connected representatives, one can then prove 6.2 by hand. 

This proof is more convincing than the one we gave, but it is longer. 

6.6. Remark. The linearization map in symmetric L-theory, from &‘a to &‘g, is 

usually not a homotopy equivalence. 

6.7. Remark. Let G’ be the geometric realization of the singular simplicial set of 

G. Let Ozc’ be the category of finitely dominated G’-CW-spectra. The map 

K%’ -+ K% induced by G’ -+ G is a homotopy equivalence by Waldhausen’s approx- 

imation theorem in [41]. So there is no great loss of generality in assuming that G 

has the homotopy type of a CW-space. (By the same argument, we can assume that 

J has the homotopy type of a CW-space.) Assuming this for the moment, we claim 

that it is permitted to write 

K*=Ap(BG). 

In fact, Waldhausen has a definition of the A-theory of BG which is very similar, 

but still differs from the above in two minor respects. Firstly, Waldhausen works 

with unstable objects (certain spaces with a G-action) where we use stable objects 

(certain spectra with a G-action). By [41, Proposition 1.6.21, the corresponding 

K-theories have the same homotopy type. Secondly, Waldhausen works with finite 

objects where we work with finitely dominated ones. This does make a difference, 

which is why we distinguish between Ap(BG) and Ah(BG) =&6iYf, where af is the 

full subcategory of finite objects in & The inclusion Ah(BG)+Ap(BG) induces an 

isomorphism on all homotopy groups except on nO. The proof is not difficult, but 

we defer it to Part III. Nor is it hard to see that 

n&lp(BG)) =&(Zn), with n = X&G), 

whereas 

rc&lh(BG)) = Z. 

6.8. Remark. Assume as before that G and J are homotopy equivalent to CW- 

spaces. The universal principal G-bundle on BG determines an associated J-bundle 

on BG because J is a G-space. Since J has the homotopy type of a sphere, this is 
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a spherical fibration. It has a distinguished section which picks the base point of J 

in each fibre. 

Conversely, given a spherical fibration on BG with a distinguished section, pull 

it back to EG. The result is a spherical fibration over EG, with a distinguished sec- 

tion S. Write J for the mapping cone of s. Then J has the homotopy type of a sphere, 

and G acts on it by an action which fixes the base point. 

What is the effect of suspension? We can either suspend J, or we can suspend 

(fibrewise) the spherical fibration on BG associated with J. It amounts to the same, 

and it has no effect at all. That is, J and ZJ give rise to two slightly different models 

of &lp(BG), both equipped with a strict involution. But it is clear from 5.4 that one 

of the two models is contained in the other, and the inclusion is a homotopy 

equivalence (apart from being Z,-equivariant). 

The moral is that we can associate an involution on &(BG) with any spherical 

fibration y on BG, even if y has no distinguished section. (Subject y to fibrewise 

suspension, once or several times. Then there will be a distinguished section.) 
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